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396 Research Notes

A NOTE ON A THEOREM OF ARMAND BOREL
By E. C. ZEEMAN
Received 23 August 1957

The theorem under discussion is the one which yields the cohomology of the classifying

space of a Lie group. Let E be a canonical spectral algebra for cohomology over

a field K with trivial B, term, and let B = 3 EP:°, F = 3 E3? (the algebras corre-
g q

sponding to the cohomologies of base and fibre of a fibre space).

TrEOREM 1. If F = Az, ..., 2,,), an exterior algebra on homogeneous elements of odd
degree, then N
(a) homogeneous transgressive elements y,, ..., y,, can be chosen such that

F =AWy, ---.Y,), oand degreey, = degree x;;

(b) B = K[zy,...,2,], @ polynomial ring, where z, is an arbitrary image of y,; under
transgression.

Borel gives an intricate proof of this in his thesis ((1), Theorem 13-1, p.157). He
points out that the theorem is essentially one of uniqueness, and the proof given here is
based on this remark. I prove (b) by assuming (¢) and mapping a suitably manufac-
tured spectral algebra into E; the map turns out to be an isomorphism by the com-
parison theorem (2). I do not know whether («) can also be proved by this method.

The technique is applicable to a variety of spectral sequence arguments where the
answer can be guessed and uniqueness has to be proved. For example it extends very
simply to the case:

THEOREM 2. If K isof characteristic 2, andif F admitsof a simple system of homogeneous
transgressive generators of positive degree, F = Ay, ...,¥,,), then B = K[z,,...,2,],
where z; is an arbitrary image of y, under transgression.

Borel states this ((1), Theorem 16-1); the proof is given below.

The tensor product E = E’ @ E" of two given spectral algebras £’ and E” is defined as
follows:

Let E, = E, ® E, the tensor product of two bigraded associative skew-commutative
algebras over K, with derivation, yielding another such. Since we are working over
a field, H(E, ® E;) = H(E,) ® H(E;), and so the formula E, , = H(E,) is satisfied.
The properties are immediate:

(i) If E' and E” have trivial co-terms, so has E.

(i) F=F@®F,B=B®B"

(iii) The associativity of ® for spectral algebras follows from that for algebras.

(iv) Two homomorphisms f:E’ - E’ and f":E” - E” induce a homomorphism
fefE'®E >FE k"

(v) The product in F induces a natural homomorphism £ ® ... ® £ — E.
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Definition of E(s), an elementary spectral algebra over K of odd degree s. Let
F(s) = A(y), n of degree s, B(s) = K[{], ¢ of degree s+ 1, and let E(s), = B(s) ® F(s).
Therefore if K is not of characteristic 2, the algebra E(s), is freely generated by { and 7,
the multiplicative order of % being 2 since s is odd. If K is of characteristic 2, then
E(s), is generated by ¢ and 7, with the one relation 4% = 0. Letd, = 0,7 = 2,3,...,s.
Therefore E(s), = E(s),,r = 2,3,...,8+ 1. Let d%& () = {, (the transgression). Therefore
de1(F®1) =0 and d,,({F®9) = ¥ @ 1. Consequently, for r > s+1, d, = 0 and
E(s), = E(s),, = trivial, the only non-zero term in the bigrading being E(s)%° = K.

Lemma. If yis a transgressive element of odd degree s in a spectral algebra B such thal
y? = 0, and if z is some image of y in B under transgression, then there is a unique homo-
morphism f: E(s) - E such that fn = y and f¢ = =.

Proof. We have to define for each » an algebra homomorphism f,: E(s), - E, such
that f, commutes with d, and induces f,_,. For r > s+ 1 the task is trivial since E(s), is
trivial.

Suppose r < s+ 1;let «,z be the image of z under the epimorphism «,: E§+1.0 —» E+10,
and define f,9 = y, f,{ = «,z. This determines f, uniquely since E(s) is generated by {
and 7. Moreover, f, is an algebra homomorphism since if K does not have characteristic
2 then E(s), is freely generated, and if K has characteristic 2 the one relation 7 =
in K(s),is echoed by y2 = 0in E, (this being the purpose of putting y? = 0 in the hypo-
thesis). Now «, z is a d,-cocycle, and since y is transgressive, ¥ is also a d,-cocycle for
r = 2,3,...,8. Therefore for these values of » commutativity is trivial, and f,inducesf, ;.
In the case r = 8+ 1 the transgression d%?; maps 7 and ¢ in E(s),,, and y to x,,,2
in E,,,. Therefore f,,; commutes with d_, on the generators of, and so on the whole of,
E(s),,,, and induces (the trivial) f,, ,. The uniqueness of f follows from that of f,.

Proof of Theorem 1(b). We assume (a). We are given Ewith F = A(y,, ..., ¥,), Wherey;
is transgressive of odd degree s, say. We are also given for each 7 some image z; of , in
B under transgression. Let

E=Es)®...0E@s,).
Then F= A("’l) ®... ®A(77m) = A7y, ceey Tm)>

B=EK[4]®... 0 K[L,] = KLy, - &)

Since y? = 0, the lemma gives a homomorphism f?: E(s;) - E, mapping 7, to y; and
¢; to z;, and hence a homomorphism f: E > E by the composition

Es)®..0FE(s,) e F®.. QHErduwtE,
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By construction f: F ~ F. Thereforef: B ~ B, qua graded groups, by the comparison
theorem ((2), Dual corollary). But fis an algebra homomorphism, so that f: B ~ Bis
an algebra isomorphism. Consequently B = K[z, ...,2,,]-

Proof of Theorem 2. We recall that F = A(yy, ...,¥,,) means that the monomials
Yi,Yiy - Yoo 1 < B < ... <tk =1,2,...,m), together with the unit element form an
additive base for the vector space F over K. This is more general than an exterior
algebra, since it may happen that y? + 0, as, for example, in the cohomology ring
modulo 2 of the rotation group E(3).

Since K is of characteristic 2 we may define elementary spectral algebras of even
degree in exactly the same way as those of odd degree. For each 7 there is as before
a spectral sequence homomorphism fi: E(s;) - E, mapping 7; to y, and §; to z;, only this
time it is not strictly an algebra homomorphism, because, although % = 0, we may have
(fi;)? = y3 + 0. However, f|B(s;) 7s an algebra homomorphism since B(s;) = K[{;] is
freely generated by ¢;. The construction of f is as before. Then f: F ~ F, qua additive
structure only, and so f: B ~ B, quaadditive structure, since the comparison theorem
depends only on the additive structure. But f|B is an algebra homomorphism, so that
f: B ~ Bis an algebra isomorphism.
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