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396 Research Notes

A NOTE ON A THEOREM OF ARMAND BOREL

B Y E. C. ZEEMAN

Received 23 August 1957

The theorem under discussion is the one which yields the cohomology of the classifying
space of a Lie group. Let E be a canonical spectral algebra for cohomology over
a field K with trivial Ex term, and let B = J^E^'0, F = £i?2'9 (the algebras corre-

v i

sponding to the cohomologies of base and fibre of a fibre space).

T H E O R E M 1. IfF = A(xv ...,xm), an exterior algebra on homogeneous elements ofodd
degree, then

(a) homogeneous transgressive elements yv ...,ym can be chosen such that

F = A(«/1, ...,ym), and degree yt = degree xi;

(b) B = K[zlt . . . , z m ] , a polynomial ring, where zi is an arbitrary image of yt under
transgression.

Borel gives an intricate proof of this in his thesis ((1), Theorem 13-1, p. 157). He
points out that the theorem is essentially one of uniqueness, and the proof given here is
based on this remark. I prove (6) by assuming (a) and mapping a suitably manufac-
tured spectral algebra into E; the map turns out to be an isomorphism by the com-
parison theorem (2). I do not know whether (a) can also be proved by this method.

The technique is applicable to a variety of spectral sequence arguments where the
answer can be guessed and uniqueness has to be proved. For example it extends very
simply to the case:

T H E O R E M 2. IfK is of characteristic 2, and ifF admits of a simple system of homogeneous
transgressive generators of positive degree, F = k(yv ...,ym), then B = K[zv ...,zm],
where zi is an arbitrary image of yt under transgression.

Borel states this ((l), Theorem 16-1); the proof is given below.
The tensor product E = E' ® E" of two given spectral algebras E' and E" is defined as

follows:
Let ET = E'r ®E", the tensor product of two bigraded associative skew-commutative

algebras over K, with derivation, yielding another such. Since we are working over
a field, H{E'r®E'r) = H(E'r)®H(E"), and so the formula Er+1 = H{Er) is satisfied.
The properties are immediate:

(i) If E' and E" have trivial oo-terms, so has E.
(ii) F = F'®F",B = B'®B".
(iii) The associativity of 0 for spectral algebras follows from that for algebras,
(iv) Two homomorphisms f':E' -+E' and f":E" -*• E" induce a homomorphism

/ ' ®f":E' ®E" -+E' ® E".
(v) The product in E induces a natural homomorphism E ® ... ®E -> E.
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Definition of E(s), an elementary spectral algebra over K of odd degree s. Let
F{s) = A(y), f] of degree s, B(s) = K[Q, £ of degree s+l, and let E(s)2 = B{s)®F(s).
Therefore if K is not of characteristic 2, the algebra E(s)2 is freely generated by £ and 97,
the multiplicative order of v being 2 since s is odd. If K is of characteristic 2, then
2?(s)2 is generated by £ and y, with the one relation y2 = 0. Let dr = 0, r = 2,3, . . . , s.
Therefore .E(s),. = E(s)2,r = 2,3, ...,s+ 1. Let<$+i(?7) = £, (thetransgression).Therefore
ds+i(£* ® 1) = 0 and dg+1(£* ®y) = £ft+1 ® 1. Consequently, for r > s+ 1, dr = 0 and
.E(<s)r = JE^S),*, = trivial, the only non-zero term in the bigrading being E^fy0 = K.

LEMMA. Ify is a transgressive element of odd degree sin a spectral algebra E such that
y2 = 0, and ifzis some image ofyinB under transgression, then there is a unique homo-
morphism f:E(s) -»• E such thatfy = y andf£ = z.

Proof. We have to define for each r an algebra homomorphism fr:E(s)r -*• Er such
that / r commutes with dr and induces fr+1. For r > s+l the task is trivial since E(s)r is
trivial.

Suppose/- ^ s+ l;let/crzbe the image ofzunder the epimorphism/cr:^|+1'0 -> Ef+1'°,
and define fry = y, / r£ = Krz. This determines fr uniquely since E(s) is generated by £
and n. Moreover, fr is an algebra homomorphism since if K does not have characteristic
2 then E(s)r is freely generated, and if K has characteristic 2 the one relation if = 0
in E(s)r is echoed by y2 = 0 in Er (this being the purpose of putting y2 = 0 in the hypo-
thesis). Now KT z is a dr-cocycle, and since y is transgressive, 2/ is also a d,.-cocycle for
r = 2,3,..., s. Therefore for these values of r commutativityis trivial, and/rinduces/r+1.
In the case r = 8+ 1 the transgression dj+i maps y and £ in i?(s)g+1 and y to /cs+1z
in JEJ8+1. Therefore /g+1 commutes with ds+1 on the generators of, and so on the whole of,
E(8)s+1, and induces (the trivial)/g+2. The uniqueness of/follows from that of/2.

Proof of Theorem 1 (b). We assume (a). We are giveniS with F = A(yv ..., ym), where yt

is transgressive of odd degree sit say. We are also given for each i some image z{ of yi in
B under transgression. Let

Then F = A(Vl) ® ... ® A(Vm) = A(Vl,..., V m ) ,

B =

Since y\ = 0, the lemma gives a homomorphism /^ri?^) ->i/, mapping % to ^ and
£j to 2i; and hence a homomorphism/:^ -+ E by the composition
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By construction f:F s F. Therefore/: B ^ B, qua graded groups, by the comparison
theorem ((2), Dual corollary). Bu t / i s an algebra homomorphism, so tha t / : B ^ Bis
an algebra isomorphism. Consequently B = K[zv ..., zm].

Proof of Theorem 2. We recall that F = A(y1, ...,ym) means that the monomials
ViiVu-'-yik' h < *2 < ••• < *fc(& = l>2,...,m), together with the unit element form an
additive base for the vector space F over K. This is more general than an exterior
algebra, since it may happen that y\ 4= 0, as, for example, in the cohomology ring
modulo 2 of the rotation group i?(3).

Since K is of characteristic 2 we may define elementary spectral algebras of even
degree in exactly the same way as those of odd degree. For each i there is as before
a spectral sequence homomorphism/':E(si) -> E, mapping % to yi and ^ to zt, only this
time it is not strictly an algebra homomorphism, because, although t\\ = 0, we may have
(/i?/i)2 = V\ 4= 0. However, f\B(st) is an algebra homomorphism since -5(5̂ ) = K[^] is
freely generated by Q. The construction of/is as before. Then f:F ^ F, qua additive
structure only, and so / : B ^ B, qua additive structure, since the comparison theorem
depends only on the additive structure. Bu t / |B is an algebra homomorphism, so that
f-.B^Bisan algebra isomorphism.

REFERENCES
(1) BOREL, A. Sur la cohomologie dea espaces fibres principaux et des espaces homogenes de

groupes de Lie compacts. Ann. Math., Princeton, 57 (1953), 115-207.
(2) ZEEMJUST, E. C. A proof of the comparison theorem for spectral sequences. Proc. Camb. Phil.

Soc. 53 (1957), 57-62.

GONVILLE AND CAIUS COLLEGE

CAMBRIDGE


