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ON CONTRACTIBLE OPEN MANIFOLDS

BY D. R. MCMILLAN AND E. C. ZEEMAN

Received 8 September 1961

By an open manifold we mean a non-compact space, that is triangulable by a
countable complex which is a combinatorial manifold without boundary (see next
section). The obvious example is Euclidean n-space, which we denote by En. We prove:

THEOREM. / / Mn is a contractible open manifold, then Mn x E2 is piecewise linearly*
homeomorphic to En+2.

QUESTION. Can this be improved to Mn x E1 = En+1?
In Theorem 2 of (3), the first author gave an affirmative answer to this question when

n = 3, provided that each compact subset of M can be embedded in E3, or provided
that the Poincare Conjecture holds for dimension 3. The above Theorem is an improve-
ment of Theorem 4 of (3).

In higher dimensions, n > 5,if M happens to be the interior of a bounded compact
manifold N, then Curtis (l) has noted, using the solution to the higher dimensional
Poincare Conjecture, that ,T T. T_,.

where In is the w-cube. Hence, taking interiors, we find that Mn x E1 = En+1. Examples
of such manifolds (different from En) have been given by Newman (6), Poenaru(7),
Mazur(2) and Curtis (l). However this argument is not applicable to a contractible
open manifold that is not homeomorphic to the interior of a bounded manifold, such
as the 3-manifolds of Whitehead (9) and McMillan (4). In the case n = 3, Poenaru (8)
has shown that a bounded, compact contractible 3-manifold yields I5 when multi-
plied by I2.

1. Notation. By a combinatorial n-manifold Mn we mean, as usual, a simplicial
complex whose closed vertex stars are combinatorial «-balls. We consider here only
manifolds which are either compact or without boundary. We say M is finite if the
complex is finite. We use the same symbol M to denote the underlying topological
manifold, and we denote the interior of M by M° and the boundary by M.

A subspace X of M is called a combinatorial subspace if it underlies some sub-
complex of some subdivision of M. Call r = dim M — dim X the codimension of X,
and write this as a left superscript X = rX.

Call X inessential in M, written X ~ 0 in M, if the inclusion map X -> M is homo-
topic to a constant map. Call X trivial in M if X is contained in a combinatorial n-ball
in M. Clearly if X is trivial in M then it is inessential, but not conversely, even though
the codimension of X may be large.

* We are grateful to the Referee for pointing out the application of Newman's Theorem in
Lemma 4, which enabled us to improve our result from homeomorphism to piecewise linear
homeomorphism.
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For example, think of a simple closed curve (of codimension 2) in a solid torus,
that is inessential but links itself around the torus, and is therefore non-trivial.
Similarly one can construct an w-sphere Sn (of codimension n+1) in S1 x B2n that is
inessential and non-triyial, by linking two Sn's locally, and then connecting them by
a pipe round the S1. For a more detailed discussion, see Zeeman (12).

In a contractible open manifold, of course, every subspace is inessential. If the
manifold is not a Euclidean space then it contains a finite combinatorial subspace of
codimension at least one which is inessential but non-trivial (see Lemma 4 and § 3).
In most examples there is such a subspace which is geometrically significant. For
example, in the interiors of the bounded contractible 4-manifolds of Poenaru and
Mazur, one can find such a subspace (of codimension 1) by isotopically shoving the
boundary into the interior. In Whitehead's original example (9) of a contractible
open 3-manifold, he constructed a simple closed curve (of codimension 2) with the
above property. On the other hand we shall show in the Corollary to Lemma 3, that
any compact combinatorial subspace of codimension 3 in a contractible open manifold
must be trivial.

2. Collapsing. Suppose X <= Y are combinatorial subspaces of M. We say X
expands to Y, written 1 / 7 , or, equivalently, Y collapses to X, written Y\X, if, in
some subdivision of M, there are subcomplexes K, L, covering X, Y, such that K ex-
pands to L by a finite sequence of elementary expansions in the sense of Whitehead (10).

LEMMA 1. If X/Y in M°, and if X is trivial in M°, then so is Y.
Proof. By induction it suffices to examine an elementary expansion. Therefore

suppose K, L triangulate X, Y, and that a; is a vertex and.Q8 a simplex, such that
K v xQ = L, K n xQ = xQ. Let y be the barycentre of Q. Suppose B is a given n-ball,
X <= B <= M°. Let B1 be a regular neighbourhood of B in M°, also an n-ball by White-
head ((10), Theorem 23). For some interior point z of the interval xy, we have xzQ <=• Bv

Choose two simplexes Ua, Vn~q in En meeting at their barycentres only, at u, say.
Since Q e M°, its link is a combinatorial (n — q— l)-sphere, and so we can choose a
piecewise linear homeomorphism

h: t
which throws a; to a vertex v e V. Define h: Q ->• U to be an isomorphism, so that
hy = u. The join gives a piecewise linear homeomorphism

h: st f

Let W be the face of V opposite v, and w its barycentre. Then u = hy, u' = hz are two
points on the interval vw. Le t /map vu', u'w linearly onto vu, uw, respectively, so that
/ i s a piecewise linear homeomorphism of the interval vw onto itself. Define/ | tJW = 1,
and extend/ linearly to the join UV = vwtJW. Define g: M -> M to be the piecewise
linear homeomorphism given by

g\M-8t(Q,M) = l.

Then g | X = 1 and gBx is a ball containing Y, and so Y is trivial.
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LEMMA 2. Let M be a finite combinatorial manifold. Given a combinatorial subspace

r+1X ~ 0 in M°, then there exist combinatorial subspacesrY, 2rZ in M° such that X c Y\Z.
The proof is given in Zeeman (11). The argument is long, but the geometrical idea

is simple. Y is a cone on X mapped into general position, with singularities of co-
dimension 2r. We can collapse Y onto the (2r — l)-codimensional subcone that con-
tains these singularities. The last step down to codimension 2r is achieved by piping
the middles of the singularities over the edge of the cone.

LEMMA 3. Suppose {M^, i = 1,2,..., is a sequence of finite combinatorial n-manifolds,
such that each Mt is a combinatorial subspace of M£+x, and Mi ~ Oin M^+1. Ifr+1X <= Mt,
r > 2, then X is trivial^ in -M^,^.

Proof. By induction downwards on r: If r = n, then X is empty, and so the lemma is
trivially true for all i. Assume the lemma to be true for all X of codimension > r + 1,
r ^ 2, and for all i. Given r+1X <= J^, then X ~ 0 in M%+1. Therefore by Lemma 2,
X <= Y\2rZ in M°i+l. But 2r > r+1. Therefore by induction Z is trivial in

Since Z/Y, by Lemma 1 Y is trivial in M?+„_,, and hence also X.

COROLLARY. If M is a contractible open manifold, then any compact combinatorial
subspace of codimension ^ 3 is trivial.

Proof. Choose a sequence of finite combinatorial submanifolds M^ to satisfy the
hypothesis of Lemma 3, and such that M = U M^. (For choose a sequence of finite
complexes Kt to exhaust M, M = U Kis and then choose Mi inductively to be a regular
neighbourhood of the union of Ki and a piecewise linear image of the cone on Mi_1.)
If r+1X is a compact combinatorial subspace, r > 2, then X <= some M^; therefore by
the Lemma X is trivial in J/?+n_r, and hence in M.

LEMMA 4. / / M = U Bit the union of a sequence of combinatorial n-balls, such that
each Bi <= B\+1, then M is piecewise linearly homeomorphic to En.

Proof. We may write En = U 7™, the union of a sequence of n-cubes, such that each
7™ <=• (7™+1)°. Let/j^: £1^-71beapiecewiselinearhomeomorphism.Suppose,inductively,
that we have defined piecewise linear homeomorphisms/^ Bt ->• 7i for each i, i < j ,
such that fi= ft\ Bi (i < j). Then we may extend ft to fj+1: Bj+1 -+ Ij+1, a piecewise
linear homeomorphism by Newman ((5), Theorem 3). The family {/J defines a piece-
wise linear homeomorphism M -»• En.

3. Proof of the theorem. We are given a contractible open ?i-manifold Mn. We
have to show that MnxE2 = En+2.

Choose the Mi as in the Corollary above. Let Di be the disk in E2 of radius i. Then
Mi x Di is another sequence of manifolds satisfying the hypothesis of Lemma 3.
Since M^ is a bounded finite manifold, we can choose an (n— 1)-dimensional spine
Tt such that

t In fact X is trivial in Mi+j, where j is the least integer such that 2'(r — 1) ̂  n— 2.
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Now Tt is of codimension 3 in J^ x Dit which is of dimension n + 2. Therefore by
Lemma 3, Tt is trivial in (Mi+n x Di+n)°. But Tt/M^/J^xi)^ Therefore by Lemma 1,
there exists an (n + 2)-ball Bit such that

Taking the union over all i,

MxE2<z \JBt<=MxE*.
00 CO

Hence M xE2 = \J Bt = U Bin, which is the union of a sequence of balls each in the

interior of its successor, and which therefore = En+2 by Lemma 4.
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