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We prove transversality theorems for piecewise linear manifolds, 
maps and polyhedra. Our main result is that given two closed mani­
folds contained in a third, then one can be ambient isotoped until it 
is transversal to the other. This result is then extended to maps and 
polyhedra. 

The transversality theory for smooth manifolds was initiated by 
Thorn in his classical paper [8], and has been extended to piecewise 
linear manifolds by Williamson [9]. For both of these authors the 
raison d'être was cobordism theory, and the transversality theorem 
that was needed was the following: given a map M—>Q between mani­
folds then it can be homotoped transversal to a given submanifold 
P of Q. In order to prove this P was assumed to have a normal bundle, 
and the technique was to slide the map locally along the fibres, and 
then globalise by using Baire's theorem in the function space. 

However, as yet the existence of normal bundles in the piecewise 
linear category is an open question. Haefliger and Wall [3] have 
shown that normal bundles exist in the stable range, but Hirsch [5] 
has shown tha t normal disc bundles do not always exist in the un­
stable range, and this suggests that normal bundles may not exist 
either. To cope with this difficulty Rourke and Sanderson [7] have 
recently introduced block bundles, which differ from ordinary bun­
dles by having a block over each simplex instead of a disc over each 
point. Similar theories have been introduced by Haefliger [4] and 
Morlet [6]. The importance of block bundles is that in the piecewise 
linear category normal block bundles exist and are unique. With this 
tool Rourke and Sanderson [7, I I ] have proved a transversality theo­
rem similar to Theorem 1 below. Like ours it is an isotopy theorem, 
unlike the homotopy theorem of Williamson mentioned above. Like 
us, they use direct geometric methods rather than function space 
methods, because in the function space of embeddings, those that 
are transversal do not form an open set. 

When generalising to polyhedra, block bundles are no good because 
the regular neighbourhood of a polyhedron in a manifold is not a 
block bundle. The technique that we use deals with both submani-
folds and subpolyhedra. The idea is to triangulate the ambient mani­
fold so that one object is a subcomplex, and then ambient isotope the 
other so that it cuts across the triangulation—we call this transimpli-
cial. As a result the two objects will then be transversal. 

We now confine ourselves to definitions of transversality and state-
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ments of results. For descriptions of the transimplicial tool, and de­
tailed proofs see [ l ] , [2], We work throughout in the piecewise linear 
category; for the standard definitions and properties of this category 
see [lO]. All manifolds will be closed (compact without boundary), 
all submanifolds locally flat (which is always the case in codimension 
^ 3 by [lO]), and all polyhedra compact. We remark that the defini­
tion and results of the first section can be extended to admit mani­
folds with boundary. 

Transversality for manifolds. We shall use Dt to denote a (piecewise 
linear) J-disc, with centre 0. 

DEFINITION 1. Let Qq be a manifold and Mm, Pp submanifolds. Then 
M and P are transversal at the point zÇzMC\P if there is an embedding 

h. Dm+p-q x D<i-m x Dq-p7 0 X 0 X 0 - + Ö , z 

such that 
hrlM = Dm+»-« X 0 X D™, 

k"lP = Dm+*>-« X D*-™ X 0. 

M and P are transversal in Q if they are transversal at each point of 
their intersection. If M and P are transversal in Q, then MC\P is a 
(closed locally flat) submanifold of both M and P of dimension 
m+p — q. 

THEOREM 1. Given M, P<ZQ, then M can be ambient isotoped trans­
versal to P by an arbitrarily small ambient isotopy of Q. 

THEOREM 2. Given manifolds MQPQQ, there exists a fourth mani­
fold N, contained in Q, that intersects P transversally in M. 

(N will have a boundary. However, dN and P will not intersect 
and so the transversality of N and P makes sense under Definition 1.) 

Transversality for maps. 
DEFINITION 2. Let P , Ç, M be manifolds with PCQ. Given a map 

ƒ: M-^Q, let x be a point of M such tha t /xG-P . The map ƒ is trans­
versal to P at x if there is a commutative diagram 

1 X k 
E)q-p x Dm+p-q, 0 X 0 > D*-p X Dp

9 0 X 0 

M, x — > Q, fx 

where <£, ^ are embeddings onto neighbourhoods of x, fx respectively, 
such that î ""1P = 0X-Dp, and & is a map Dw+p-fl-»pp, ƒ is transversal 
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to P if it is transversal at all such points x. We see straightway from 
the definition that if ƒ is transversal to P then f~~lP is a (closed locally 
flat) submanifold of M of codimension q~p. 

THEOREM 3> Given PC.Q and f: M—>Q, then ƒ can be ambient iso-
toped transversal to P by an arbitrarily small ambient isotopy of Q. 

Notice that an ambient isotopy of a map is the composite of the 
map with an ambient isotopy of the target manifold. 

Transversality for polyhedra. Let X be a polyhedron. We shall 
associate with each point # £ X an integer J(X, #), called the intrinsic 
dimension of X a t x j as follows. 

DEFINITION 3. I (X, x) is the largest integer t for which there is a 
cone V, with vertex vt and an embedding 

ƒ : D% X V, 0 X v -+ X, x. 

REMARK. Equivalent definitions of intrinsic dimension are: 
(a) There is a triangulation of X with x in the interior of a /-simplex 

if and only if t^I(Xy x). 
(b) Consequently the set of all points of intrinsic dimension ^ tis 

the same as the intersection of the /-skeletons of all triangulations of 
X. 

(c) Let L be the link of x in X (defined up to piecewise linear 
homeomorphism). Then I (X, x) is the largest t such that L is a /-fold 
suspension. 

EXAMPLES. 

1. If X is a manifold of dimension n, then 

J(X, x) = n if x lies in the interior of X, 
= n — 1 if x lies in the boundary of X. 

2. Let X, x be as illustrated, then I (X, x) = 1. Here F is the cone 
on three points. 
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3. Let X be the double suspension of a Poincaré sphere. I t is a 
well known conjecture that X is topologically homeomorphic to Sb, 
But from the point of view of the piecewise linear structure given by 
the double suspension 

I(X, x) = 1 for x on the suspension circle, 
= 5 for other points. 

Suppose now we have two subpolyhedra X, F of a manifold Q. The 
codimension of X C o is the dimension of Q minus that of X. Let z be a 
point of I P i F and suppose 

7(X, *) - *, 

/ ( F , z) - w. 

DEFINITION 4. The polyhedra X, F are transversal at z if there is an 
embedding 

fa £>t+u-q x £*-.* x £)a-^ 0 X 0 X 0 ~ » e , 2 

and subcones F C ^ Ö ~ S l ^ C Ö r t t (a disc is regarded as a cone with 
vertex 0 and its boundary as base) such that 

hrlX = £><+«-* X F X £>*-", 

A-1 F = £><+«-« X £>*~' X PT. 

X and F are transversal in Q if they are transversal a t each point of 
their intersection* 

In the case where X and F are closed manifolds, t} u become their 
respective dimensions, V, W each reduce to a single point, and so the 
definition agrees with tha t given earlier. Transversality and non-
transversality situations are illustrated below. 

Transversality 



188 M. A. ARMSTRONG AND E. C. ZEEMAN 

THEOREM 4. Given X, YQQ both of codimension ^ 3 , then X can be 
ambient isotoped transversal to Y by an arbitrarily small ambient isotopy 

Relative transversality. We have not been able to prove a rela­
tive transversality theorem, and the block bundle theory suggests 
there is an obstruction involved, see [ l ] , [7, II] . The simplest out­
standing question is as follows: Given two spheres transversal in the 
boundary of a ball, do they span transversal discs in the ball? 
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