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CP-DENSITY OF STABLE DIFFEOMORPHISMS & FLOWS

By E.C. Zeeman

1. Introduction.

One of the major objectives of dynamical systems is to find a
dense set of "nice" diffeomorphisms in the space oa of all diffeomorphisms
of a manifold M. Also to find a dense set in the space 96 of all vector
fields, that integrate to '"nice" flows. Here dense usually means with
respect to the C1—topology, which seems to be the natural topology to
put on aa and }6 "Nice'" means conceptually—-graspable, easily-describable,
countably—-classifiable, etc. Nice used to mean structually stable,
until Smale showed the latter were not dense [6] . The search for a
nice dense set is still open.

However recently Smale [5] and Shub [3] have proved a lesser,
but very striking, result, that if the Co—topology is used For*a instead
of the C‘I , then indeed there is a very nice dense set. I would like to

suggest calling this nice set Smale diffeomorphisms, because they are

only slightly more complicated than Morse-Smale diffeomorphisms. In
fact they satisfy Axiom A and the no-cycle condition,
and have basic sets that are generalised horseshoes, which, for
convenience, we call shoes. Shoes are finite sets or Cantor sets, and
we show below that it suffices to use shoes that lie in 2-dimensional
submanifolds of the n-manifold M,

The same result holds for flows. It seems that the flow version
should be important for applied mathematics, because modelling within

" . . O 2 :
tolerance of experimental accuracy is in effect merely C -approximation.

Therefore any ordinary differential equation can be approximated by a



Emale flow. AN it;'nter*esting property of Smale flows, from the
point of view of applied mathematics, is the fact that the only
attractors are fixed points and closed orbits. This would seem to
justify, in retrospect, tnhe enormous attention paid to oscillators in the
literature on differential equations, compared witnh the scant attention
paid to any more complicated kind of atfractor.

What then are the disadvantaces, if any,of this result ? At
first the mixture between c® and C1 seems unaesthetic, but if that is
the way the mathematics runs then we must follow. Admittedly it
seems a shame to mess up the purity of an Anosov diffeomorphism by
approximating it with a Smale diffeomorphism, but then this should
be viewed in the same spirit as approximating irrationals by rationals,
or Shrodinger operators by operators with discrete spectrum. A more
serious critism of the result is that it does not seem to extend easily
to parametrised systems. The best kinds of density theorem lead to
an open—dense set, which becomes the O-stratum of a stratification,
which in turn leads to a theory of bifurcations and catastrophes. The
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Smale diffeomorphisms and flows are paradoxically C —open and C -dense

but unfortunately are not open—-dense in either topology.

2. Smale diffeomorphisms.

Let M be a compact closed Cm—-manif’old. L.etﬁ be the space

@® . ; : o a
of C  —diffeomorphisms of M, with the C -topology. Let f €. A
basic set S of f is called a shoe if the germ of f at S is diffeomorphic
to one of a countable family of germs that we explicitly construct below,

in sections 4 - 7. Define f to be a Smale diffeomorphism if:




Axiom 1. The non-wandering set is a finite union of shoes.

Axiom 2, The no-cycle condition. In other words the relation

between shoes given by 51 < 52 if inset (51) meets outset (Sg)

contains no cycles, and therefore generates a partial ordering.

Remark. We call a Smale diffeomorphism transv 1 if the insets

and outsets of the shoes cut transversally. In fact transversality with
Axiom 1 implies Axiom 2 (see [4] ). Hyperbolic periodic orbits,
including hyperbolic fixed points, are special examples of shoes. If

a Smale diffeomorphism is transversal, and if all the shoes are

periodic orbits, then it is Morse-Smale. Therefore Smale diffeomorphisms
include, and are a strict generalisation of, Morse-Smale diffeomorphisms.
Moreover they not only have the added advantage of Co—density, but also

retain the following "nice" properties,

o
Theorem A, Smale diffeomorphisms are C -dense in 08 .

1
Theorem B. Transversal Smale diffeomorphisms are C -stable.

Theorem C. Smale diffeomorphisms satisfy the Morse-inequalities.

The proof 0§ A is due to Smale [7-_‘ and Shub [8] , together with
the addition described in Section 8 below; the proof of B is a corollary
of Robbin's theorem [1] ; and the proof of C is due to Zeeman [8,9“_\
following Smale [4] .  Shub and Williams have also shown that
transversal Smale diffeomorphisms are Co—dense, but have not published

the proof yet.



3. Smale flows.

Let -}C be the space of C1—vector~ fields on M, with the Co—topology.
Let X e)ﬁ , and let ? be the resulting flow. A basic set S of CP is
called a solenoid of the germ of the phase portrait of ? at S is
diffeomorphic to that of the suspension of a shoe. Define X to be a

Smale system, and CP to be a Smale flow, if

Axiom 1. The non-wandering set of @ is a finite union of
T

hyperbolic fixed points and solenoids.

Axiom 2, The no-cycle condition.

Theawe have as above :

o
Theorem A', Smale systems are C —-dense in }E

Theorem B', Transversal Smale systems are structurally stable.

Theorem C', Smale flows satisfy the Morse-inequalities,

The proof of A' is promised in [8] and sketched in Section 9 below.

B' is due to Robinson [2] and C' in [8,‘5-31.

4, Shoes.
A shoe will have an ambient dimension n, and an index r, where

o € r£n, and we shall call it an n-shoe of index r. Geometrically

the index r represents the dimension of the outset. The attracting
(r=0) and repelling (r=n) cases are easy to define, and so we do them

first before proceeding to the more meaty saddle (o £ r & n) cases.



Define n-shoe of index O = an attracting n—-shoe

= the gerr .71 n=dimensions of an

attracting hyperoolic periodic orbit.

Il

Define n-shoe of index n a repelling n-shoe

= the germ in n-dimensions of a
repelling hyperbolic periodic orbit.,

In particular where the period = 1 we have fixed points. Let o(n, ?n
denote the germs in n-dimensions of attracting, repelling hyperbolic
fixed points.

Now we come to the saddle shoes, which we can reduce to the
2-dimensional case as follows,
Let n 2 2 and o £ r& n. Define :

n—shoe of index r = (2-shoe of index 1) x ?Pq X o(n—rb1 ,

where the right hand side denotes the topological product of the three
germs. There remains to classify, by explicit construction, the 2-shoes

of index 1, of which the Smale horseshoe is the classic prototype.

5. Preshoes.

Define a preshoe P = (P,V,H,f) where P is a manifold and

f: V—» H a diffeomorphism between submanifolds.

2
Example 1. The classical horseshoe [5] Let P = R, V = sqguare,

H = the horseshoe, f = the classical map. (Figure 1).
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Example 2. An alternative formulation of the horseshoe. Let P = square,

V = two vertical rectangles, H = two horizontal rectangles, as
shown in Figure 2, and f = the linear part of the classical horseshoe
map.
We continue with definitions., Given a preshoe P, define the
derived preshoe P' = (P' ,V',H',f'") by P'"=VvV N H
V= P A P

H' = P ~ P

th =
Defined the r derived preshoe P™ = (P h . Let S = O P".

Define the induced shoe to be the set S together with the germ of f

at S. Examples 1 and 2 both induce the same shoe, S being the
Cantor set of the horseshoe. To construct the general 2-shoe index 1
we shall generalise Example 2. For this we need algebraic data. For
simplicity we shall confine ourselves to the orientable case, but the

theory extends both to non-orientable manifolds,” and to orientation



reversing diffeomorphisms of orientable manifolds [9_] .

6. Indecomposable matrices.

Let G be a g x g matrix over the non-zero integers. Given
a permutation T of (1,...,q), let MG denote the result of applying

M to both rows and columns of G. We say G is decomposable if,

for some MM ,

where G1 , G. are square submatrices, and * indicates possibly

2

non-zero elements. Otherwise call G indecomposable. For example

a cyclic matrix is indecomposable, where by a cyclic matrix we
mean the matrix associated with a cyclic permutation of (1,...,q).
One can easily show [8] that any matrix G can be decomposed

into indecomposable factors

G
1
0]
G = G2l
* :ﬂ--G—-
r‘ -

The factors are unigue (up to permuation of rows and columns within
each factor). Furthermore the non-zero elements of * induce a partial

ordering amongst the factors.



7. Construction of the shoe from algebraic data.

+ -
Define the algebraic data for a preshoe to be a pair (A A )

of g x g matrices over the non-negative integers, such that
G =BT B
is indecomposable.
We now proceed to construct a preshoe from this data. Denote

the sums of rows and columns of G by

vi=ZGij 5 hjziGij.
j i

Indecomposability implies Vi hi 21, for all i, Let F’1 2 F’Q,... ’Pq

be a set of q disjoint rectangles. It is convenient to think of them
sitting on Re, so that they have parallel axes. For each i, in Pi

let \/i be the union of Vi disjoint vertical subrectangles, where

vertical means they stretch from top to bottom and do not meet the
sides of Pi (as in Figure 2), and let Hi be the union of hi disjoint
horizontal subrectangles, where horizontal means they stretch from side
to side and do not meet the top and bottom of F-’i. For instance
Example 2 above would arise from the data q = 1, A+ = A = (1,

G =(2). LetP =UPi, V = U\/i, H = UHi' There remains to
construct the diffeomorphism f : V= H, This is going to map each
vertical rectangle onto some horizontal rectangle by expanding horizontally
and contracting vertically. There are exactly two possible ways to
map each rectangle, either preserve the orientation of both axes, or

reverse the orientation of both axes (since we have agreed to preserve

the 2-dimensional orientation). Call these two ways positive and negative.



To define f, choose Gij of the Vi—rectanlges and map them onto

+ - +
Hj—r‘ectangles, and since Gij = Ai" + Aij we can map Aij positively
J

and A:L-j negatively.

Remark 1. There is a finite element of choice he-=2 of choosing
which rectangles to map to which. Therefore each algebraic data
(A+,A_) gives rise to a finite number of shoes, If however 2 Sr<n - 2,
the resulting shoes are diffeomorphic.
Let S be the induced shoe arising from the preshoe of this construction.

One can prove the following lemmas [9] .

Lemma 1. If G is a cyclic matrix then S is a saddle hyper-bdlic

periodic orbit of period g.

Lemma 2. If G is a non—cyclic indecomposable matrix, then S is

a saddle hyperbolic Cantor set, and f l S is a subshift of finite type.

Therefore f , S is topologically transitive and the periodic orbits are
dense in S. Therefore S is a basic set, provided that the germ
of f at S is suitably embedded into a global diffeomorphism of a
manifold. In other words the general shoe is very like the classical

horseshoe.

Remark 2. We have completed the definition of saddle shoes. We have
classified shoes in the sense of presenting a countable list of the

possible algebraic data, namely the set of pairs of matrices (A+,A")
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such that G is indecomposable. However this list contains much
redundancy, and we have not classified shoes in the sense of stating
criteria for when two data give rise to diffeomorphic shoes. This

is an open question.

Remark 3. If G is decomposable, we call the resulting germ S a

composite shoe. Then the unique decomposition of G into indecomposable

factors decomposes S into a finite union of shoes, which are partially

ordered by the partial ordering of factors.

Remark 4. The matrix G = A+ + A is the geometric sum, and is
related to the geometry, as we have described above. Meanwhile

the algebraic sum A = A+ - A s significantly related to the algebraic
structure of the manifold. In fact A has interesting invariants, called
signatures, which are related to the homology of the inset and outset

of the shoe, and which give rise to the Morse-inequalities of Theorems

C and C' (see [9] Do

8. Co—density_of diffeomorphisms.

The proof of Theorem A in section 2 is too long to give here, and
we confine ourselves to sketching the main steps. The proof is to be
found in Smale [7] , Shub [3)] , and [9] . In addition to the
Smale-Shub procedure, it is necessary to show that our classified list
of 2-shoes, and hence the resulting Smale diffeomorphisms, are sufficient
to approximate any given diffeomorphism of an n-manifold. There are
3 main steps to the construction.

Step (1). Let f : M —» M be the given diffeomorphism. Choose
a smooth triangulation K of M, with mesh as fine as the desired

approximation - all diffeotopies will be this fine. Choose a smooth
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tubulation of K, that is a tubular neighbourhood Tr‘ of the r-skeleton
of K, for each r, giving a handle decomposition of M., Step (1)
of Shub [SJ is to diffeotop f onto a new diffeomorphism, which, for

convenience, we shall still call f, with the property f'I'PC int('TP),

for each r. )
S —

Step (2) of Smale [7] is to further diffeotop f so that the

image of each r-handle, where it crosses r-handles, crosses them
linearly, expanding r-dimensions, and contracting (n-r)-dimensions.

In particular r = 0 gives attracting, and r = n repelling, periodic

orbits, . :E: a————@

Step (8) Ifo< r< n, each r—handle can be written as a

product of disks, h: B D: x D:"" . At the zentre of D'i""" choose

an oriented frame, and let d?-r‘ denote the diameter along the first
axis. Inside D?—P there are a finite number of subdisks, which are
sections of images of r-handles. Each subdisk inherits by f a
diameter and frame. We show in [QJ , that f can be followed by
a diffeotopy that strings the subdisks like beads along the diameter,
each with its little diameter in line, and with the remainder of its
axes parallel (the first axis along the diamater may have its
orientation reversed, due to an orientation obstruction). Similarly

for the disks D: 5

n-v
D;
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There remains to verify that after the three steps the
-~ : . I r r
diffeomorphism is Smale. Let h = Uhi , and let h also denote
i

the n—dimensional preshoe

r r 1

A = ¢h", £k, ham’, £l R anT).

et HP denote the induced composite n-shoe of index r., For each
A 2 . roo_n-r
i, let ki denote the product of the two diameters o —i Di , and
2 ; 2 .
let k= denote the corresponding 2-preshoe, and K~ the induced
; . r 2 r=1 n=pr-—1
composite 2-shoe of index 1. Then by Step (8), H = K x ? X ol :
Let Gij be the number of components of f‘n:n h; . Of these let
.I..
Aij be the number of those with diameters oriented coherently, and
= + -
Aij the number of those with diameters reversed. The (A ,A ) is
2
the data for the preshoe K™, In general G is not indecomposable;
however the decomposition of G into indecomposable factors gives the
shoes in HP, and hence, for all r, the basic sets of f.
Finally the ordering of shoes, first by dimension, and then by the

partial ordering of factors of G, for each r, ensures the no-cycle

condition.

9. C°density of flows.

The analogous theorem for flows, Theorem A' of section 3, was
announced by Shub and Hirsch in [3] and further details are also
given in [9] . Given a flow, the basic idea is to choose a finite
set of (n-1)-dimensional disks transverse to the flow so that each orbit

is cut by at least one disk. The flow itself gives a map f between
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disks. Approximate f as above. There are three main technical
difficulties in this procedure, which a~= awkward but soluble, as
follows.

(1) f is not continuous; a discontinuity occurs whereever an orbit
flows from an interior point of one disk to a boundary point of another
disk. However all such discontinuity points can be made wandering,
and so do not interfere with the non-wandering set.

(2) It may not be possible to have fT < int T, because the
image of an r—handle may cross the boundary of a disk. However
this difficulty can be tackled by making the boundaries in general
position relative to one another, with respect to the ﬂow, and triangulating
them first. By careful construction the diffeotopy of the flow can be
arranged to ensure

T iDL AT A I3TTH,
which is sufficient to permit Step (2) above.

(8) The fixed points require special treatment. By an initial
approximation we may assume there are only a finite number of fixed
points, and that these are hyperbolic. Round each sink and source
choose a small (n-1)-sphere, and add these to the family of disks above.
For each saddle choose two small (n=1)-dimensional cylinders, one
transversal to the outset, and the other to the inset. The map f is
defined on all the disks, spheres and cylinders except on the spheres
surrounding sinks, and the interiors of the cylinders tranversal to the

insets.
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The non-wandering set of the approximated flow consists of the

fixed points and the orbits through the shoes of f, But the orbits

through a shoe are diffeomorphic to the solencid suspending that shoe,

and so the approximated flow can be shown to be Smale.
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