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A CATASTROPHE MODEL FOR THE STABILITY OF SHIPS

E.C. Zeeman
1% INTRODUCTION,

Catastrophe theory provides a new way of looking at the statics
of a ship, and this in turn lends a new simplicity to the global
non=linear dynamics, The weight of the ship and the position of
the centre of gravity are taken as parameters. Then the set of
equilibrium positions form a smooth manifold that maps onto the
parameter space. It is the singularities of this map that are
recognisable as elementary catastrophes.

For example heeling and capsizing are fold catastrophes.

At the metacentre there is a cusp catastrophe. The point of
inflexion of the lever arm curve is caused by another cusp
catastrophe. The increased likelihood of capsizing when overloaded,
or when the crest of a wave is amidships, is due to a swallowtail
catastrophe. The ewvolution of hull shape from cance to modern

ship is characterised by a butterfly catastrophe. On the metacentric
locus there are also hyperbolic umbilic catastrophes., The sudden
onset of heavy rolling due to non-linear resonance with the wave is

a dynamic fold catastrophe.

For the naval architect this approach in terms of canonical
forms offers a qualitative geometry that is complementary to the
classical approach [2,8,9,11.1. Whether or not such formulation will
be of any use remains to be seen, because to make quantitative
predictions it is still necessary to choose coordinates and
approximations as in the classical theory. However as a general
principle it is always advantageous to retain the dynamics in a
conceptually simple form for as long as possible, so that the

important qualitative features can be kept in the forefront of the



mind unobscured by detail, allowing the eventual approximation to
be tailored to the job on hand. Catastrophe theory should be
used like the zoom lens on a microscope, for gaining a global
view of the problem, and thus enhancing the discrimination with
which one selects the necessary tool from classical mathematics

to zoom in and solve it.

For the mathematician the interest of this example lies in
the rich variety of the mathematics that it brings together; it is
a prototype revealing catastrophe theory as a natural éener‘alisation
of Hamiltonian dynamics. Besides having a parameter space, an
elementary catastrophe model has a state space, a potential, and
a dynamic minimising the potential. Here the state space is the
usual phase space of Hamiltonian dynamics, namely the cotangent
bundle of the configuration space of the ship, while the potential
is none other than the Hamiltonian, which is a Lyapunov function
for, and therefore locally minimised by, the Hamiltonian flow
with any type of damping. The subtlety comes from the bifurcations
of the dynamic over the parameter space, which are governed
by the elementary catastrophes in the evolute of the buoyancy

locus,

We begin the paper by giving in Sections 2 - 6 a brief
elementary sketch of the classical linear theory of ship motions,
partly for the benefit of readers unfamiliar with the topic, and
partly to see later how the model generalises it. The reader
familiar with the linear theory is recommended to proceed at
once to Section 7, where we describe the significance of the
geometry. The model itself is introduced in Section 10, at
first for rolling only, and then successively enlarged to include
pitching, heaving and loading. At the end in Section 14 we
place the treatment in its proper group-theoretical setting.

An unsolved problem is how best to incorporate into the

model the forcing terms of wind and wave, so as to prove



global existence theorems concerning induced oscillations, resonance

and capsizing.

The model already sheds some light on capsizing.

In the conclusion we tentatively suggest two areas for further

exploration.
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2. LINEAR THEORY OF ROLLING.

The classical linear theory of how a ship behaves like a
pendulum hanging from the metacentre dates back to Euler [7]
in 1787 and Bouguer [4] in 1746. For simplicity we begin by
confining ourselver: to the artificial 2-dimensional problem of
rolling only. When we come to the catastrophe model, the
notation will allow us to generalise with ease to the full

3-dimensional situation.

(a) (b

Figure 1. The buoyancy locus and metacentre.

Let G = centre of gravity of ship.

m
i

centre of buoyancy when ship floats vertically

= centre of gravity of water displaced.

centre of buoyancy when ship is at angle 6.

B
6
® = buoyancy locus = {Be; -7 < 6 < g}
N9 = normal to ® at BB'
M = metacentre = centre of curvature of ® at Bo.

K = GM = metacentric height.




Lemma 1, ® is a convex closed curve, When the ship is

heeled at angle 6, the normal NG is wvertical.

Proof. Let Ae denote the water displaced at angle 8. The
area c:'F.A9 is independent of 8, since by Archimedes principle .the
weight of water displaced equals that of the ship. AB is obtained
from AO by adding the immersed wedge, shown shaded in Figure 1,
and subtracting the emerged wedge, shown dotted. Since the wedges
have equal area, BOB6 is parallel to the line joining the centres
of gravity of the two wedges. As 6 — O this line tends to the
horizontal in Figure 1(a), and hence the tangent to ® at Bo is
horizontal in Figure 1(a). The above argument is independent of
the symmetry at 8 = 0, and hence applies to any 6. Therefore

the tangent to ® at B, is horizontal in Figure 1(b), and hence the

6

normal N9 is vertical.
For small 6, the inclination of BOBB to the horizontal has

the same sign as 6, and hence the curvature of @ at B_ is upwards,

o]
The same argument applies to any 8, and hence ® is convex.

Corollary. For small 6, the buoyancy force passes

approximately through the metacentre M.

Proof. The buoyancy force acts vertically upwards at BB’
and therefore along the normal NB' For small 6 the normals pass
approximately through the centre of curvature, M. In fact since
B_. is a point of symmetry of ®, the distance from M to Ne is of

0
order 93.

Remark. For the 3-dimensional problem the same result
holds, with the proviso that ® is now a convex: closed surface; the
proof is the same. Note that the result is independent of the
shape of hull, and holds not only for ordinary ships but also for

catamarans and icebergs, for example,.

The righting couple in Figure 1(b) consists of the weight W

of the ship acting downwards at G, and the buoyancy force W acting



upwards at B Let £ denote that lever arm of this couple :

L

s.

]

distance from G to N

6
= GZ, in Figure 1(b) ,

where Z is the foot of the perpendicular from G to N Newton's

6
law of motion gives :

e R € D
where I is the moment of inertia of the ship (and the entrained
water) about G. From the Corollary to Lemma 1 and Figure 1(b),

L

Il

K sin B, to second order in 6,
= pub, again to second order.

Hence the approximate linear equation is

Ié.=—Wp,9. R R R R T (2)
This has rolling solution

6 =26 cosglt- % (3)

O T L L L B

where 90 is the amplitude and T the period of the roll. The

amplitude is arbitrary, and the period is given by

/1
T = 27 m . s es s s s e et e (4)

The viscosity of the water has a damping effect, and the simplest
way to put this into the dynamics is to add a small damping term

2e8 to equation (2), where € is a small positive constant :

e - W
Groebs S£0 =00 soissiinns (8
This has the effect of multiplying the solution (3) by a decay
-£ - 2
factor e t, and lengthening the period by a factor of order £°,

which we can ignore.

3. QUANTITATIVE ESTIMATES.

By (2) the larger the metacentric height the more stable is
the ship. However by (4) the larger the metacentric height the
shorter is the period of roll, and the more uncomfortable is the

ship; therefore choice of U is an important feature of ship design.



What is at first surprising is how small U can be compared with
the size of the ship : for example a liner 300 metres long may
have a metacentric height of only half a metre. Therefore we
shall digress briefly to make some very rough estimates of U
and T, in order to give a quantitative feel for the problem
complementary to the qualitative feel given by the subsequent
catastrophe theory. We shall see in Section 7 that if G is too
near M small alterations in the position of G may seriously

increase the danger of capsizing.

Let 2a = beam of ship = width at water line,
A = area below water-line,
(x,y) = coordinates of B8 relative to BO’
p= BOM = radius curvature of ® at BO.

emma 2. p = x .
Proof. Let t = tan®, A P 4
Let 0" denote order t". a T ]
Beg
X
(0]

Each wedge has area

12 2

-é-a t+ 0, and the A
coordinates of the centres

of gravity of the wedges

relative to the mid point of Figure 2. Computing P.
the water line are :
2a 1 at 2
(2 S+0 & 07

The coordinates (x,y) of B9 are given by taking moments of the

wedges about BO i

3
1 2 4a 2 2a t 2
Ax = + = + 0
x=GF@bHz +o0 3
32
: 2 3 3
By o (ea by ot 5° o 25 g
2 3 3
3
= 2
Therefore puttingp=2%, x=pt+0
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Therefore the equation of ® is

x2 3
y=5+0(><),

which has radius of curve p at the origin, as required.

Define a ship to be wall-sided {f the sides are parallel at
the water-line, as in Figure 1. Let B denote the maximum angle
of heel for which the water—line still meets the parallel part of
the sides (in Figures 1 and 3, 6 is about 250).

Lemma 3. In a wall-sided ship the buoyancy locus for

|6| < B is precisely the parabola x> = 2py.

n
Proof. In the proof of Lemma 2, leave out all the 0 's.

In order to estimate the metacentric height and period of roll

we now make a couple of

very rough quantitative /: :\

assumptions. Assume (i)

that A is approximately a M.//'/'/ a
rectangle with the draught Sy f 13___

/////’/ ala /4
equal to a third of the beam, 7 3|2 g oa
VA | —
as in Figure 3. Therefore 2 g ; 3
. / /
a _ 4a° TT77 77757577777 777
3 3 24 i
233
BOM =p="x (by Lemma 2) Figure 3. Estimate of M.
= 2
2 -
Meanwhile BO is % below the water-line, and so M is % above.
Therefore if h1 = height of G above the water-line,
a
u—s_h_i R A A ] (6)

Assume (ii) that the moment of inertia I is the same as that of a

solid disk of radius a :
Wa2
] R N I I R A A R ) (7)

g 2
where g = gravitational acceleration = 9,81 m/secg. We can

now compute the period of roll:



=1
[

b2t g gﬂ by (4)
a
b
e’r»ggﬂ y (1)

=1'42~7% ¢ - )

Although the above assumptions are crude the resulting orders
of magnitude are not unreasonable for both naval and merchant ships
(2 pages 107,335]. Where ships tend to differ is in the height of
G above the water‘—li;'\e, and so let us work out a couple of
examples of a destroyer and a liner in order to illustrate the contrast.
In each case we assume typical values for the beam and position

of G, and deduce the resulting metacentric height and period of roll.

Table 1 Destroyer Liner
Beam, 2a 10m 30m
Assume
Height of G above water‘-—line,h1 0 2m
Metacentric height, 4, by (86) 0.8m 0.5m
Deduce
Period of roll, T, by (8) 8 secs 30 secs

Notice that the greater metacentric height of the destroyer gives a
greater righting couple, and hence makes her more stable, so that
she can perform tighter manoeuvres, as well as causing a faster roll.
By contrast the lesser metacentric height of the liner makes her

less stable, although this does not matter so much since she does

not have to indulge in manoeuvres; meanwhile she benefits from the
increased comfort of the slower roll and smaller accelerations,

which ensure that the passengers are less likely to be seasick.

4. ROLLING IN A SEAWAY .,

The forced oscillations induced by periodic waves, and the

resonance that occurs when the period of the waves coincides with
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the natural period T of rolling, were first studied by Bernoulli [3]
in 1759.

Typical Atlantic ocean waves usually have a wave-length
between 50 and 100 metres [2, page 177]. In deep water the
wave-length determines both the speed and the period of the wave.
For example a 60 metre wave has a speed of 35 Km/hour (= 19 knots)
and a period of 6 seconds. The height of the wave from trough to
crest is independent of the wave-length, and in the Atlantic, for
instance, wave heights of over 6m occur on an average of 55 days
in the year. In a 80m wave of height Bm the maximum inclination

of water surface to the horizontal is approximately 180.

60m

T

35Km/hour

Figure 4. Typical Atlantic wave of period 6 seconds.

What is the effect of the waves on the ship? Suppose that in
our 2-dimensional example the water surface is inclined at an angle
@ to the horizontal, as in Figure 5. The buoyancy force is the sum
of all the pressures on the hull that would have sufficed to keep
the displaced water in equilibrium with its surface inclined at
angle @; hence the buoyancy force acts at 86+a perpendicular to the
water surface, in other words through M (approximately). Therefore
the equation (2) for rolling must be modified to

16 = “WH(B+Q)  eevvrernrnnnnn. (9)
Suppose now that we have a beam sea, in other words waves are
coming from the side with period T and maximum inclination ao to
the horizontal. The inclination @ will be a periodic function of
time, t, approximately equal to

2mt
a—ao cos —— T @ [0))
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Figure 5. Inclined water surface.

Substituting (4) and (10) in (8) we obtain
2
Y & = R ent
(2”) 6+ 6 =-a-= @ COS=I= .+ ..enn (11)

The particular integral of (11) of period T will give the rolling
induced by the waves. The general solution of (11) will in fact be
the sum of this particular integral together with a natural roll (3)
of period T; however if we were to add a damping factor as in (5),
then the latter would decay exponentially leaving only the particular
integral, which is therefore an attractor of the dynamic. The
particular integral will in fact be an amplification of the wave

amt
= = l e L I R
6 = A @ cos=r. .. (12)
where A is a constant amplifying factor. We can compute A by

substituting (12) into (11) :
2
I}(I) + 1])\0: = - .
T

T 2 -1 .
Ther\efor‘e A = [(?) — 1] TR R I BN RN B S (13)
We can now compute the effect of a typical Atlantic beam sea upon
our destroyer and liner. Assume T = 6 secs and @ = 18° as in

Figure 4,
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Table 2 Destroyer Liner
Period of roll T, by Table 1 _ 8 secs 30 secs
Amplifying factor A, by (13) 2 e
' ’ T 24
Amplitude of induced roll, by (12) 23° 1°

Thus while the destroyer will be wallowing in the seaway the liner
will hardly notice it. As Barnaby observes [2 p.337].

"This is the great paradox of naval architecture -
that the more stable the vessel really is, the more
unstable she appears in a seaway."

He reinforces his observation with a revealing anecdote [2 p.355]

that gives life to our computationé :

"This can be illustrated by the case of two
yachts that were virtual sister ships, differing only
in metacentric height. The captain of the first yacht
reported her to be a magnificent sea-boat, extremely
dry, and "stiff as a church" in a sudden squall
[like our destroyer]. Her owner thought she was
much too quick and lively in a seaway. As yachts
have to be built for owners rather than for captains,
the second vessel was given less metacentric height
[like our liner]. The same captain transferred to
the new yacht, and, in accordance with the best
seafaring tradition, greatly preferred his old ship,
His new command was wetter and more sluggish
in a seaway, and, for these reasons, he considered
her a worse sea-boat. The new owner was delighted,
and said his yacht was 'stiff as a church" in a
seaway."

5. RESONANCE.

Before leaving the seaway we make some remarks concerning
resonance., Suppose as before that the ship encounters waves of
fixed period.

(i) If the wave—-period, T, happens to coincide with the

natural roll-period, T, then the amplifying factor reaches a
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maximum. Because of damping this maximum is finite. Formula
(13) gives A = =, but this is wrong because damping has been
ignored. If, as in (5), a damping term of 2¢8 is added to (9),
then for T = T the resonant solu;ion has a -g— -phase-shift,

Tt

= =)\ in———
2] ao sm_l_

with amplifying factor A =g—_—'—_ . However the induced roll in this
case may be so large that the linear theory is no longer valid.

Indeed in heavy seas resonance may cause capsizing.

(ii) Let V, v denote the speeds of ship and wave. If the ship's

course is such as to cause> resonance we call ‘it a sensitive course.

T
Lemma 4, If V > v(1+7_) there are 4 sensitive courses.

Proof. Figure 6 shows how the period with which the ship
encounters the waves depends upon the course. The blob represents
the velocity of the waves, and the circle represents the different
courses of the ship at speed V. The dashed line indicates the two
courses perpendicular to the velocity of the waves (beam sea with
period T). The dotted lines indicate the two courses on which the
ship will ride with the waves (period ®), The other four lines
indicate the sensitive courses. In order to encounter the waves
with period T, the relative velocity of the ship must have a
component =+ V—T-tn the direction of the waves. Therefore the ship's

=
T
velocity is v(1:l=:-r) in this direction. The condition for the four

Periods: T i @ i

—) waves

Figure 6. Sensitive courses.
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directions to exist is that this component be less than V. This
completes the proof. On the two sensitive courses closest to the
wave direction the ship overtakes the waves, while on the other two

ship is overtaken by the waves.

(iii) The non-linearity of the accurate rolling equation makes
a wall-sided ship behave like a hard spring for small angles of
roll, and a soft spring for large angles of roll (see Section 9 and
Figure 19 below). The latter is liable to produce a Duffing effect

[8,15] near resonance, as shown in Figure 7. If there is a

Duffing effect, then when the ship reduces speed on a sensitive course
overtaking the waves the amplitude of induced roll may at first
increase slightly, and then drop suddenly when a critical speed V1

is reached. Conversely, if the ship increases speed again a
hysteresis delay will occur, during which the roll will remain

deceptively small, until a higher critical speed V_ is reached,

2

amplitude of
induced

soft sprin
roll. ( P 9

period of encounter

T with waves

amplitude of

induced (steering a sensitive course overtaking the waves)
roll

speed of
T-1 ” v V, V, V ship
T+T

Figure 7. Duffing effects.
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when the amplitude will suddenly increase again., Such a
catastrophic jump could be dangerous because the dynamic stability
of the resulting resonance might lead to capsizing before remedial
action had time to take effect. Similar - catastrophes occur near
(jT_;_'—_;-—,;)V, which in the case of the liner above equals %¥V. Note these
catastrophes are different from those in the main model in

Sections 7 - 14 below.
6. PITCHING AND HEAVING.

Passing from the 2-dimensional problem to the 3-dimensional
problem, the buoyancy locus 8 becomes a convex closed surface
rather than a convex closed curve. Therefore ® has two
principle directions of curvature at BO’ and two centres of
curvature. One is the metacentre M for rolling about the
longitudinal axis that we have already discussed, and the other is
the metacentre M™ for M* o
pitching about the transverse
axis, We now estimate the
period of pitching, using the
same notation as before, only P u*
with asterisks.

For simplicity assume
(i) that the area below water

is a rectangle with length L

and draught D. Then by

G

e
C

Lemma 2 the radius of

/ £l rry

v

curvature is -

O

F
P =5lp T 12D * Figure 8. Pitching metacentre.

Assuming (ii) that L > 24D, then p* > 2L > BOG, and therefore

BOG can be ignored in the estimate of u*
2
*
-_— — 8 8 8 e 4 s e s s 1
) P 7 . (14)

{D
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Assume (iii) that the moment of inertia about the transverse axis
is the same as that of a rod of length L. Therefore

o W (|_/2)2= w2
g 3 12g
By (4) the period of pitching is

ST
* =
T an Wi

o /E;Q by(14) and (15) .... (16)

cereenses (15)

i

= 2/D, approximately.

Applying this to our two ships :

Destroyer Liner
Length, L 100m 300m
Assume
Draught, D 3.3m 10m
Pitching metcentric height u*, | 250m 750m
by (14)
Deduce
Period of pitching T*, by (16) | 4 secs 6 secs

Since W* is several hundred times larger than u, the ship is

far more stable with respect to pitching than to rolling, and hence
the period is short, and amplitude kept small. The accelerations
involved may be greater, and hence pitching is sometimes more

uncomfortable than rolling.’

Heaving refers to ’/_J: 2\

oscillations up and down.

Let g denote the height of

the ship above the

equilibrium position, For

a wall=-sided ship of

S
N
0
O

draught D, the volume of T e

displaced water is reduced . -
Figure 9. Heaving.

by a factor of approximately -I%
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Therefore the buoyancy force is reduced by the same factor, and
so there is a net downward restoring force of V-é—g . Therefore by
Newton's law
s o _Wa

D -

(Olé

.a

Ther‘efﬁl‘"e q=— q T T O R R B R SR ) (17)

Ok

Hence the period for heaving is the same as that for pitching (16).
In practice of course the periods differ slightly, because our
assumptions are too imprecise. However the proximity of the
periods implies that pitching and heaving will be coupled, and the
classical theory of the coupling originated with Krilov in 1893 (see
(3D).

The other 3 normal modes of oscillation, yawing (about the
vertical axis), swaying (from side to side) and surging (fore and
aft) differ from rolling, pitching and heaving in that buoyancy does
not provide a natural restoring force; therefore these modes tend
to occur only as induced, or secondary effects. We express the
difference in group-theoretic terms in Lemma 12 below. This
completes our elementary sketch of the classical linear theory, and
we now begin the catastrophe theory, which is the main business

of the paper.

7. CUSP CATASTROPHE AT THE METACENTRE.

For simplicity return to the 2-dimensional problem of
rolling. For large angles the linear theory is no longer valid
because the buoyancy force no longer goes through M. We need
to look at not just one centre of curvature, but all of them.

Therefore define the metacentric locus M of the ship to be the

locus of centres of curvature of the buoyancy locus;, in other
words M is the evolute of G,
Now BO is a point of symmetry of ® where the radius of

curvature is stationary, and hence M is a cusp point of M, The
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geometric question arises : Which way does the cusp branch,
upwards or downwards? In Figure 10 we show two cases arising
from different shapes of hull, on the left a modern wall sided
ship, and on the right an old-fashioned canoce, shaped like an

ellipse with major axis horizontal.

(a) b
— (b)

1 — y

74

T 777777777

\\\\\\\Si
N
7

777

Figure 10. Cuspe in ship (a) and canoce (b).

Lemma 5. The cusp branches upwards in the ship (a) and

downwards in the canoe (b).

2
Proof. In a wall-sided ship ® is locally a parabola x = 2py,
by Lemma 3. This has evolute
2 3
27px = 8y-p) ,
which is a cusp branching upwards. The result for an elliptical-

shaped hull follows from the Corollary to Lemma 7 below.

We will now explain the physical significance of which way
the cusp branches. Suppose that the position of the centre of
gravity of the ship changes for some reason : for example the
canoeist might lean over the side, or stand up, or put up a mast.
In a liner the passengers might crowd to one side to see something
interesting. A cargo boat might load or unload, or restow its
cargo (see Figures 27 and 28 below). In heavy weather the cargo

might shift®™ by itself, or slosh about if liquid, or the ship might

* Capsizing and the shifting of cargo are still hazards. During

1975 according to Lloyds Casualty Return [10] 125 merchant ships
foundered mostly in heavy weather (not to mention another 211 lost,
missing, burnt, wrecked, or in collison). Of the 125 foundered 13
are known to have capsized and sunk, 14 others developed a list
before sinking, and in 9 cases the list was known to be due to the
cargo shifting.
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accumulate ice to windward, or sea-water on deck. Fishing vessels
may be tempted by a good catch to take on more than is advisable.
For simplicity assume for the moment that the position of G changes
without altering the total weight, so that the buoyancy locus remains
the same (in Section 14 we allow for change of weight).
Question : given the position of G, at what angles can the ship
float in equilibrium?
Answer : by Lemma 1 it will be those angles 6, such that G lies
on the normal Ne to ® at BG' But the normals to ® are tangents
to It therefore the angles are obtained by drawing tangents from
G to the cusp.

In Figure 11 we plot the graph ;Df 8 as a function of G, for
the two boats pictured in Figure 10, In each case the position of
G is represented by a point in the horizontal plane, C. The
value of 8 is represented by a point on the vertical axis R, and
for simplicity we assume |6| < B, where B is some suitable bound
(in the full model in Section 10 below, we allow 8 to be arbitrary).
On the vertical line above each position of G we plot the corresponding
equilibrium wvalues of 8, and as G varies these points trace out a

smooth surface, which we call the equilibrium surface, E. We

shall prove in Theorem 2 below that in each case E is a
cusp-catastrophe. By definition

E = {(G,0; G € Ny, |6] < 8]

={N9x9; 8] < B}, cC xR .

Therefore E is a smooth ruled surface, consisting of horizontal
lines parallel to the normals, one for each 8. In other words E
is the normal bundle of 8, Over the outside of the cusp E is
single-sheeted because if G lies outside (as in Figure 11(a)) there
is only one tangent from G to the cusp. On the other f';and over
the inside of the cusp E is triple-sheeted, because if G lies inside

(as in Figure 11(b)), there are three tangents from G to the cusp.
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(a) (b)

X B X

Figure 11. The.cusp-catastraphe in_the ship (a) and the ecance (b).

If E is projected down onto C it becomes folded along a
curve, called the fold curve F, which projects onto the cusp.

Hence the cusp is a bifurcation set. F separates E into two

components, one representing stable equilibria and the other
unstable equilibria. For example if G lies on the axis of symmetry
(the y-axis) then by equation (2) in Section 1 the equilibrium
position 6 = 0 is stable or unstable according as to whether the
metacentric height U is positive or negative, in other words

whether G is below or above M.
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If, further, G lies inside the cusp ther the 6 = 0 equilibrium
is represented by a point on the middle sheet of E, whilst the
other two equilibria are represented by points on the upper and

lower sheets of E., We call these heeling angles if the cusp

branches upwards, as in case (a), and capsizing angles if the

cusp branches downwards, as in case (b).

(a) (b)

Figure 12 (a) Heeling angle. (b) Capsizing angle.

Here the difference between the two boats becomes apparent because :

Lemma 6. Heeling angles are stable, whereas capsizing

angles are unstable.

Proof. Let 8 be a heeling or capsizing angle. If M9 denotes
the corresponding metacentre, the centre of curvature of ® at BB’
then the tangent from G touches the cusp at MG' Figure 12 shows
that in case (a) G lies below MB’ and so the ship behaves stably
like a pendulum hanging from MB' By contrast in case (b) G lies
above M g’ and so the canoe behaves unstably, balanced precariously
over MG; any perturbation reduciﬁg 6 will produce a righting couple

that returns the canoe upright, whereas any perturbation the opposite
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way will produce an opposite couple, that will cause the cance to

turn turtle.

Therefore in Figure 11(a) the upper and lower sheets of E
are stable, while the middle sheet over the inside of the cusp is
unstable. In Figure 11(b) it is the other way round, and so in this
case E is called a dual cusp-catastrophe. The difference is
emphasised in Figure 13 which shows in each case the section of
E over the y-axis, rotated through 90° so as to make the y-axis
vertical. The section in each case consists of the line 6 = 0
bisecting a curve (which is a parabola modulo 965_. The stable
equilibria are shown firm, and the unstable dotted. In case (a)
the curve is stable and rising and represents heeling angles, while
tn case (b) it is unstable and falling and represents capsizing
angles. The specific angles are given by the intersection of the

curve with the horizontal line through G.

unstable

Yy unsta;ble
(a) 4 (b) f i
H
H
M dee
¢ A ’," "*.‘ unstable
4 ' capsizing
: o ’G “ stable A angles
, 11
- —> 6 . - 250

Figure 13. Sections of E over the y-axis for (a) ship and (b) canoe.

Now imagine an experiment in which the centre of gravity is
raised up the y-axis past M. In case (a) when G passes M the
ship will heel over to one side or the other, and will settle into
stable equilibrium at the heeling angle. This happens for instance
in certain old cargo boats when they unload, because they used to

be designed with negative metacentric height when empty (see
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[2, p.71] and Figures 27, 28 below). It also tends to happen in
toys like model gondolas for the same reason, and sometimes the
heel can be corrected by loading the model with a little ballast.
Suppose that G is on the y-axis above M with the ship heeled
to the right, represented by a point on the upper sheet of Figure 11(a).
If G is now moved to the left the ship will stay heeled to the right
until G crosses the left side of the cusp, when it will suddenly heel
over to the left; this is represented in Figure 11(a) by the point
crossing the fold curve and jumping catastrophically onto the lower
sheet., Conversely if G is now moved to the right then the ship
will delay until G crosses the right side of the cusp when it will
suddenly heel back again. Therefore in case (a) the cusp is a

heeling bifu rcation set,

By contrast case (b) is more dangerous because if G is
raised up the y-axis past M the canoe will suddenly capsize. Worse
still, if G happens to be off-centre when it is raised then it will
cross the cusp sooner because the cusp branches downwards, and
hence capsize sooner. This imperfection-sensitivity explains why
when standing up in a canoe it is advisable to keep perfectly in the
centre, Similarly if G is moved sideways, then as soon as G
crosses either side of the cusp the canoe will capsize., A graphic
description of such an event is given by Gerald Durrell [6, p.163].

"Peter nodded , braced himself, clasped the
mast firmly in both hands, and plunged it into the
socket., Then he stood back, dusted his hands, and
the Bootle=Bumtrinket, with a speed remarkable for
a craft of her circumference, turned turtle."

Evidently raising the mast raised G close to the metacentre where the
cusp was very narrow, and stepping back was sufficient to cause

G to cross the cusp — or maybe only just to reach the cusp, and

it was actually the dusting of the hands that gave the final
perturbation across it. Durrell goes on to explain how the problem
was solved :

"For the rest of the morning he kept sawing
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bits off the mast until she eventually floated upright,
but by then the mast was only about three feet high."

Summarising :

Theorem 1. An upward branching cusp is a heeling bifurcation

set, and a downward branching cusp is a capsizing bifurcation set.

Notice that this theorem only refers to the statics, because
although we have used local righting couples to determine the
local nature of the stability, the global dynamics has been ignored.

We shall return to the dynamics again in Section 10.

8. GLOBAL METACENTRIC LOCUS.

We have yet to prove that the cusp in a canoe branches
downwards. The easiest way to tackle this is to investigate the
global metacentric locus of a completely elliptical ship, (like a
submarine before it submerges).

Lemma 7. The buoyancy locus of an ellipse is a similar

elliese.

— ?0'
/,//, ////// Al B
v
Ci
Figure 14.

Proof. Let O denote the centre of the ellipse, and Ce the
lowest point when heeled at angle 8. The line C)C9 bisects all
horizontal chords, therefore bisects the region AB below the water
line, and hence contains the centre of buoyancy BB' Map the
ellipse onto a circle by an affine area-preserving map, and let
B’BB’CG’O' Then B' is the
centre of gravity of A', and since the area of A' is independent of 6

A',B',C',0" dencte the images of A
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The equation of E in (x,y,08)>space is formally the same as
that of the normal Ne in (x,y)-space, with the proviso that 6 is
reinterpreted as a coordinate rather than a parameter. In case (a)

of the wall-sided ship ® is locally a parabola

<2 = 2py,

by Lemma 3. The normal Ne is given by
oA 3
x + (y-ptanf - 5P tan 6 = O,

As a surface this is differentially equivalent (in the sense of [13]) to
x + (y-p)8 - 6° =0,
which is a canonical cusp catastrophe at (0,p) with x,y as normal
and splitting factors.
In case (b) of the canoce, ® is an ellipse by Lemma 7, and
the equation of the ellipse with radius of curvature p at the origin
and eccentricity e (where e is the ratio of the vertical axis to
horizontal axis) is :
x2 + (g) = 2py.
The normal Ne is given by 5 . 5w
x + (y-p)tan 8 + p(1-e“)tan B [1-e(e“+tan0) °] = 0
Since e < 1, this is differentially equivalent, as a surface, to
x + (y-p)8 + 93 =0
which is a canonical cusp-catastrophe at (0,p) with -x,-y as
normal and splitting factors. This completes the proof.
Remark, If in case (b) the eccentricity e is increased until
e > 1, this converts the horizontal axis of the ellipse into the minor

axis, and changes the sign of 93, converting the cusp from

downwards branching into upwards branching, as in case (a).

The guestion now arises : what is the complete metacentric
locus for a modern wall-sided ship? Where does M go to after the
initial upward branching of the cusp? How does I compare globally
with the 4-cusp evolute of an elliptical hull shown in Figure 15?

We start by looking at a rectangle :
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the ratio O'B'/O'C' = constant, k say, independent of 8. Since the map
is affine OBB/OC9 = k. Therefore, as Ce traces out the ellipse,
BB traces out a similar ellipse k times the size. This completes
the proof. Notice that the resultis independent of the weight (or

density) of the ship.

Corollary. The metacentric locus of an ellipse has 4 cusps

as shown in F‘igur*e 15,

For it is merely the evolute , M

of the buoyancy locus, which

by the lemma is a similar

ellipse. In particular this

completes the proof of -

Lemma 5, for in an

elliptical shaped canoce with )

major axis horizontal, the Frgure 15.
metacentre M is the topmost cusp, and hence the cusp branches
downwards.

Remark. In the 3-dimensional situation exactly the same
proof shows that the buoyancy locus of an ellipsoid is a similar
ellipsoid. The evolute of an ellipsoid, however, is more difficult
‘to visualise because it consists of two sheets corresponding to the
two metacentres, one for rolling and one for pitching. It can be

regarded as 2 spheres, pinched along 3 elliptical cusped edges,

one of which contains 4 hyperbolic umbilics [5].

Theorem 2. The equilibrium surface E has a cusp catastrophe

at the metacentre M.

Proof. If the buoyancy locus ® is generic, then from general
theory its evolute M will have a generic cusp at M, and its normal
bundle E will have a cusp catastrophe. However we cannot be sure
that the curves in question are generic without checking the explicit

formulae for wall-sided and elliptical ships.



27

Theorem 3. In a rectangular hull of density % the buoyancy

locus is the union of 4 pieces of parabolas, and the metacentric

locus has 8 cusps.

y 21

\j
NN

W \\\\\\\\\§

S S S S

Figure 16, The metacentric locus of a rectangle.

Proof. The rectangle is a wall-sided ship for |6| < B,
where B is the inclination of the diagonal to the
horizontal. Therefore for ]9[ < B, ® is a piece of a parabola
by Lemma 3, and contributes an upwards branching cusp to M by
Lemma 5. There are 4 pieces, corresponding to the 4 sides of
the rectangle. Two pieces of ® join at Bﬁ’ and here the two
parabolas have the same tangent by Lemma 1, the same radius
of curvature by Lemma 2, and hence the same centre of
curvature MB. Therefore two pieces of M touch at MB, producing
a parabolic cusp. Therefore M is continuous, containing 4 generic
cusps (of index -2—) separated by 4 non-generic parabolic cusps

(of index 2), as shown in Figure 16.

Remark 1. If the density is reduced (or increased) the 4
parabolas in ® are separated by 4 pieces of rectangular hyperbolas .
When the density reaches %tan B then 4 swallowtails appear giving
raise to another 8 cusps in I} making 16 in all (see Figures 25

and 28 below).
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Remark 2, The non-genericity of the 4 parabolic cusps is
due to the non-smoothness of the corners of the rectangle., If the
corners are rounded-off in a Cw_fashion, then the 4 parabolic
cusps become generic, and the qualitative shape of M is stable under
small perturbations. Now the cross—section' of a large modern
ship can be regarded as a perturbation of a rounded-off rectangle.
Therefore :

Conjecture. Large modern ships have metacentric locus M

similar to that in Figure 16. Detailed computations for individual ships
show the top three cusps [11, p.135].

Remark 3. The evolution of hull shape from ellipse to
rounded rectangle will cause a bifurcation of M from the 4 cusps
in Figure 15 to the 8 cusps in Figure 16. The reader familar
with the elementary catastrophes will recognise immediately canonical
sections of the butterfly catastrophe [12].

Problem. Prove, for an explicit isotopy of hull shape, that

the bifurcation is an unbiased butterfly, in other words is equivalent

to the symmetry section of the buytterfly catastrophe given by putting
the bias factor (the coefficient of 63) equal to zero. The governing
potential at the bifurcation point should be

-kBB + 6% + %(p—y)92 - %0,
where X,y are coordinates of G, p the radius of curvature, k > 0,
and i the isotopy parameter running from i < 0 for the canoe to
i > 0 for the ship. The unbias is due to the symmetry of the ship,
and a full butterfly should be obtained by introducing a bias factor

measuring lop-sidedness of hull,

Remark 4. Globally the bifuraction set of the modern ship
is not so very different from that of a canoce, and therefore the
ship is not so safe as Theorem 1 lwould at first sight suggest.
Therefore it is necessary to take another qualitative look at the
heeling and capsizing. We assume the ship has metacentric locus

similar to Figure 16, as conjectured above.
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Theorem 4. The only heeling part of the metacentric locus M

is the cusp at M, shown dotted in Figure 17(a); the rest is capsizing.

The equilibrium surface E is a section of a dual™ butterfly catastrophe,

as shown in Figure 17(b). The stable equilibria are shown shaded.

Therefore for stability G must lie below M.

unstable

(b)

= X

Figure 17, 0
(a) Metacentric locus R is part heeling (dotted) and part capsizing (firm).

(b) Equilibrium surface E is a section of a butterfly catastrophe,

Proof. The bifurcation set in Figure 16 determines that E
is a butterfly section, as shown in Figure 17(b) (see [12,13]). The
identification of stable and unstable components of E is deduced
from Figure 11(a), which'is a subset of Figure 17(b). Hence E
is a dual butterfly. The heeling and capsizing parts of M ar;e

determined by consideration of the 5 sections of E over the 5 lines

* The dual butterfly [13] has germ —96, as opposed to the

butterfly which has germ +96. This is the only application I know

of the dual butterfly.
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Figure 18. Sections of E.

parallel to the x-axis in Figure 17(b), as follbws. The 5 sections
are shown in Figure 18, with firm lines indicating stable 'equilibria,
and dashed lines unstable equilibria. The nature of the stability
determines which way the couple acts upon B, and hence determines
the direction of the catastrophic jump at each fold point, as

indicated by the arrows. The catastrophe is heeling if the arrow
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tip stands on another stable sheet, and this only occurs for the

middle two arrows of the fourth section.

Hence the roots of those

arrows (indicated by blobs) are the only two heeling parts of M,

All the other parts of M induce capsizing catastrophes.

completes the proof of Theorem 4.

9.

the righting couple (see Figure 1(b)).
i

< <=
0 6 2

Figure 19 for the two boats shown in Figure 10,

LEVER ARM CURVE,

This

Assume G fixed. Recall that L denotes the lever arm of

The graph of 4 for

is called the lever arm curve, and is illustrated in

The slope of

the lever arm curve at the origin is equal to the metacentric

height, U, because for small 6 the linear approximation of the

lever arm is 4 = ub,

(b)
point of
inflexion
soft
spring
capsizing
angle

wp=--
/r M |

soft
spring

capsizing
angle

Figure 19, Lever arm curves for (a) ship and (b)

canoe.

A
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Lemma 8. In a wall-sided ship (a) the curvature of the

lever arm curve is initially positive (like a hard spring), whereas

in a cance (b) it is negative (like a soft spring).

Proof. In the case of a wall-sided ship the normal N6 is
given by
x cos B + (y-p)sinf - 1§p tan29 sinf = 0
by the proof of Theorem 2, Hence the distance £ from G = (0,p—H)
to NB’ choosing the sign to be positive, is

L= psind + ‘Ep tan=8 sin 6

' 3
=ue+(§-g)e + o8>y .

Since U < p the coefficient of 93 is positive, and hence for 6
positive and small, the curvature is positive. In the canoe the
normal N9 is given by
' 2 2 2,-%
x cos 8 + (y-p)sinB + p(1-e“)sin B[ 1-e(e“+tan“6) °] = 0 .
Hence

-1
g sinf - p(1—32)sin 9[1—e(e2+tan28) 4]

=
Il

= ub - 93[51 e 2(1-e2y + £1+ o6 .

; - 3 . .
Since e < 1 the coefficient of 8~ is negative, and hence, for 6

small and positive, the curvature is negative.

Remark 1. In Figure 19 the difference in sign between the
initial curvatures can be intuitively explained by which way the cusps
branch in Figure 10, For in case (a) the upward branch'ing causes
the hard spring, while in case (b) the downward branching causes
the soft spring. To be precise the conditions are slightly
different : the cusp branches up or down as e 2 1, whereas the
curvature is hard or soft as e?: (1—u/3p)'%, and since 4 < p
this constant lies between 1 and /3/2.

Remark 2, In Figure 19(a) the change of curvature from
hard to soft at the point of inflexion can be intuitively explained

by the butterfly section in Figure 16. In the case of a rectangular
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hull, the initial hard spring is caused by the upward branch MMﬂ
of M, the point of inflexion occurs at the angle B of the cusp Mﬂ’
and the subsequent soft spring is caused by the subsequent
downward-branch of M, to the capsizing angle, as indicated in
Figure 12(b). In the wall-sided ship Figure 17 the same holds,
except that the smoothness of hull causes the angle at which the
inflexion occurs to be displaced slightly below that at which the

cusp occurs,

Remark 3. The dynamical importance of the lever arm curve
was first recognised by Atwood in 1796. Its use for judging
stability in the design of ships was first proposed by Reed in 1868,
and today various key features of the curve are widely used as
stability criteria by naval architects and marine authorities [9].
What is new in this paper is the relationship between seemingly
ad hoc features of the curve and generic properties of the
metacentric locus arising from canonical sections of the butterfly

catastrophe.

10, CATASTROPHE MODEL FOR ROLLING.

In Sections 2 - 8 we have discussed the local linear dynamics,
and in Sections 7 - 9 the non-linear statics. We now weld the
two together in order to study the global non-linear dynamics.

Definition : An elementary catastrophe model™ is a

parametrised system of gradient-like differential equations, specified
by four things :
(i) a parameter space C,
(ii) a state space X,
(iii) an energy function H:CxX - R, and

(iv) a dynamic D on X, parametrised by C,
that locally minimises H,

* In the language of [14] this is at structure level 2.
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The function H determines the equilibrium manifold, E © CxX, by
the equation VXH = 0. The catastrophe map X:E - C is induced
by projection. The bifurcation set is the image in C of the
singularities of x¥. If H is generic then E has the same dimension
as C, and the only singularities of X are elementary catastrophes,

by the classification theorem [12,13],

We first construct the model for the 2-dimensional rolling
problem only, where it is easy to understand and visualise, and
then in subsequent sections extend it to 3-dimensions to include
pitching, heaving and loading.

(i) Define the parameter space to be the plane C containing

our 2-dimensional ship. The parameter G € C is the position of
the centre of gravity of the ship (relative to the hull),

(ii) Define the configuration space to be the unit circle, S.
The configuration of the ship is uniquely determined by the angle
8 € S. Define the state space, X = T*S, to be the cotangent
bundle* of S. The state of the ship is given by (8,w) € T*S,

where w is the angular momentum. As before let

W = weight of ship
I = moment of inertia of ship and entrained water.
h = h(G,8) = height of G above BB’ at angle 6

= ZBB’ in Figure 1(b)

Lemma 9.

The potential energy of the system is: P = P(G,0) = Wh,
2
w
T ineti th is: K = W) =— .
he kfn c energy of the system is K(w) o1
Proof.
Let Vg, height of G above the water line,
h2 = depth of E!9 below the water line,

* For a general treatment of Hamiltonians on cotangent bundles
see [1].
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Then taking the water line as zero potential,
Wh1 = potential energy of the ship,

Wh
2

1l

potential energy of the displaced water.

Therefore P total potential energy = Wh, + Wh2 = Wh.

1
The angular momentum w = 10, and therefore as required

K = kinetic energy = ;—192 =

(iii) Define the energy function of the model to be the

Hamiltonian H:CxT*S - IR given by

2
H=P+K=Wh+<
o1

We can now deduce the equilibrium surface and bifurcation set

fromm H, as follows.
dh

Lemma 10. Y L.
Proof. Let Me,p9 be the centre and radius of curvature of
® &
at BAS' Let ;J,B GMG’ MG
o = GM B Then

6-6°
nG,0) = Pg — Hg coSC

h(G,B+0) = Py = Mg cos(@H) + O(@")

oh 9
Y [% h(G,9+«o)J(p=O

lug sinca+e) + o],

= Ko sin ¢ =4 .,
Figure 20.

The buoyancy locus ® has coordinate 6, and is contained in

the ambient space C. Therefore the normal bundle N® of ® is

defined by
NGB = [Nexe } € CcxS .

The geodesic spray is the natural map N® - C of the normal

bundle into the ambient space induced by projection CxS - C, The
image of the singularities of the geodesic spray is the evolute

of B, which we have called the metacentric locus M.
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Theorem 5. The equilibrium surface E. is the normal bundle

N® the buoyancy locus, The catastrophe map X:E - C is the

geodesic spray. The bifurcation set is the metacentric locus, M,

Proof. E is given by VXH = 0, in other words by the

equations
3H _ 3H _
30~ dw - 0
oH w *
Now 30" 1° and hence w = 0, Therefore E © CxS © CxT'S ,
where S is identified with the zero-section of T*S. Also
oH dh

358 = W-a—-é— = WL, by Lemma 10, and hence £ = 0, Therefore

G € NB’ the normal to ® at B Therefore

6°
E = {(G,0,0);G € Ne} = {Nexﬂ] = NGB .

The catastrophe map X merely says "forget 8", mapping each

normal to itself, and giving the geodesic spray. Hence the

bifurcation set, which is defined to be the image of the

singularities of X, equals M. This completes the proof of

Theorem 5. To complete the model there remains to define the

dynamic.

Assuming G fixed, the Hamiltonian dynamic on TS is

uniquely determined from H by the intrinsic symplectic structure
of the cotangent bundle (Newton's law of motion is built-in [1]).

Explicitly the dynamic is given by the Hamiltonian equations

° OH  w

=30 =1

. OH d3H

W = —35 = -Wgg = -Wk .,
Therefore

6= =-Wt .

which is the same as.equation (1) in Section 2. The resulting
Hamiltonian flow is the accurate global non-linear generalisation
of the approximate local simple harmonic rolling solution (3).
However as yet we have not included any friction, because the
Hamiltonian flow is conservative, conserving the energy H.

(iv) Define the dynamic D of the catastrophe model to be the

Hamiltonian dynamic with non-zero damping. There is no need to be
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any more specific about the nature of the damping other than
saying that energy is dissipated, because this ensures that H
decreases along the orbits of D, Therefore H is a Lyapunov
function for D. Therefore D locally minimises H, and depends

upon the parameter G, as required. The model is complete.

11, GLOBAL DYNAMICS.

In order to understand the catastrophe dynamié D we fix G
and draw the phase portrait of the resulting flow in Figure 21(c).
The phase portrait is the family of orbits on T*S. Since T*S
is a cylinder, we cut the cylinder along the generator 6 = # = -1,
and lay it out flat, with the understanding that the two sides should
be identified. In Figure 21 the dotted parts to the rignt of 6 = 7
are merely the periodic repeats of the left hand sides of the
portraits.

Before drawing the portrait of the damped flow, we first draw
two portraits of the undamped Hamiltonian flow for two different
positions of G in Figure 21(a) and (b). The latter is easier to
understand because the Hamiltonian orbits are contained in the
energy levels of H, which are themselves 1-dimensional since

T*S is 2-dimensional.

Figure 21(a) shows the Hamiltonian flow for G on the axis
of - symmetry below M, as in the case of the ship or the canoe in
Figure 10. The 4 equilibria are given by w = 0 and
92 = 0, stable vertical .
91 ’98’ unstable capsizing angles (see Figure 12(b))
84 = 1, stable turned turtle.
We are assuming that the ship does not sink if it capsizes, but is
capable of floating upside down in stable equilibrium. The other
three equilibria, 61 ’62’98 correspond to the three points above G
on the three sheets of E in Figure 11(b) for the canoe and
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Figure 17(b) for the ship. The closed orbits round 92 represent
rolling, as in the solution (3) of Section 2, The closed orbits
round 94 represent rolling while turned turtle. The uppermost
orbit going from left to right (which is closed since 7 = -T)
represent the ship rolling over and over clockwise; the lowermost

orbit represents the same but anticlockwise,

Figure 21(b) shows the Hamiltonian flow when G has been
displaced slightly to the right. As a result, in stable equilibrium
the ship will heel slightly to the right : 92 > 0., Figures 11(b)
and 17(b) show that the capsizing angles will also change slightly,
93 decreasing and |91] increasing. Therefore it takes less
energy to capsize to the right than to the left, because the
98—energy—tevel lies inside that of 31 .

There is also a dynamic capsizing phenomenon, as follows.,

Let 8; be the intersection of the B6-axis with the 93—ener*gy—level,

such that 81 < 9; < 0. We call 8{, the dynamic capsizing angle.
If the ship is displaced to angle 6 such that 91 <@ < 9'1 , then it
will not capsize to the left, but on the return roll to the right it
will roll right over and then capsize, because the orbtt will lie
outside the Bsﬂener'gy—level. Consequently, from the point of view
of resonance, the dynamic capsizing angle is more dangerous than
the static capsizing angle, because it is smaller

le:| <6, <6, .

On the other hand, if the ship rolls to the right almost as far
as 93, then the recovery will take much longer, because, for
small €, the time to roll back from 93—6 upright again will vary
as |log 8|, as can be seen by considering the linear approximation
at Bs. Therefore the ship will tend to hang perilously iﬁ the brink
of capsizing for a lgng time, wvulnerable to the chance wave or

sqguall that might tilt her over the brink,

Figure 21(c) shows the damped flow for the same position of

G. Since the dynamic is now dissipative the two stable equilibria
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92 and 94 are now attractors. If this figure was superimposed

upon the figure above, all the damped orbits would cross the energy
levels towards the attractors. The basin of attraction of the

upright attractor 92 is shown shaded, and the complement is the
basin of attraction of the turned turtle attractor 94. The

capsizing angles are qualitatively unchanged since, being saddle-
points of the Hamiltonian flow, they were already structurally stable.
Similarly all the remarks about capsizing hold good.

Problem. What is the best way to introduce the effect of
wind and wave into the model, so as to generalise the induced
linear rolling of Section 4 to the non-linear situation? The effect
of periodic waves can be simulated by introducing a new cyclic
parameter that translates the phase-portrait to and fro parallel to
the B-axié, corresponding to adding a forcing term representing
the varying water surface, as in Figure 5 and equation (9). The
induced roll is then an attracting closed orbit lying over the
parameter—-cycle., Perhaps the effect of the wind could be
similarly modelled by translating the phase-portrait parallel to the
w-axis, to simulate the impulse transmitted by the wind into

angular momentum.

12, MODEL INCLUDING PITCHING.

We first enlarge the model to 3-dimensions to incorporate
pitching as well as rolling, as follows.

(i) The parameter space for G is now 3-dimentional,
C = IRS. _

(ii) The configuration space is now the unit sphere, S = 52.
The configuration of the ship is uniquely determined by the spherical
coordinate 8 € S, The state space isl the cotangent bundle,
X = T*S, which is now a non-trivial 4-dimensional bundle. The
state is given by (6,w) € T*S, where w € T’é

horizontal component of angular momentum at 6 (the vertical yawing

S now represents the
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component of angular momentum is automatically excluded - see
Lemma 12 below).

(iii) The energy is the Hamiltonian H = P+K, where the
potential energy P = Wh, exactly as before. Meanwhile the
kinetic energy K = Ka(w) is the usual gquadratic form on T"éS, defined
as follows. If (w1 ,wa,ws) are coordinates of w relative to the
principal axes of inertia of the ship (which are tilted by 6), and
I_) are the corresponding moments of inertia, then

(11 ’12’ 3 2
Kg(w) = T d/21, .

(iv) As before, the dynamic is the damped Hamiltonian

dynamic, and this completes the 3-dimension model.

Theorem 6. Theorem 5 holds for the 3-dimensional model.

Proof. E is defined by VBH = VwH = 0. Since the kinetic energy
Ke(w) is positive definite in w, VwH = wa-( = 0 implies w = 0.
Therefore E © CxS as before.

Let Figure 20 represent the vertical plane through G and BB'
Although 6 is now a spherical coordinate, we can still define the
angle @, and give meaning to 6+p, where ¢ is an angle. As in
the proof of Lemma 10,

[%h(G,B«pJ(p:O = £
VgH =0 =9 =0
= left-hand side wvanishes
=>» . =0
=>»G € N6
=p E = NB®, as required.

The rest of the Theorem follows naturally, as before.

The geometry of the 3-dimensional model is more complicated,
for this time E is a 3-manifold folded over M, and M is a surface
with cusped edges and singular points. In particular, as the ship

pitches, the rolling metacentre M traces out a curve on I, which
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we call the pitching curve, B, and which, due to the bilateral
symmetry of the ship, is a cusped edge of M containing various
singular points. In an ellipsoidal ship ® is a similar ellipsoid,
and P is an ellipse containing 4 hyperbolic umbilics, and these are
the only singular points of I (see [5]). For any floating shape,

M always has at least 4 hyperbolic umbilics, because, by counting
indices, the number of hyperbolic umbilics minus the number of

elliptic umbilics is twice the Euler characteristic of ®, which is 2.

In a wall-sided ship there are 4 other singular points on P,
namely 4 unbiased-butterflies, where the butterfly sections (shown
in Figures 16 and 17) bifurcate back into single cusps fore and aft.
These butterfly points explain why large pitching enhances the
danger of capsizing, because if the pitching angle passes beyond
themthen the rolling-capsizing=-angle decreases. In other words
pitching has the same qualitative effect as isotoping a ship—-shaped
section into a canoe-shaped section (see the Problem after
Theorem 3 Remark 3), and the resulting decrease in capsizing angle
can be seen by comparing Figures 12(b) and 17(a). Moreover large
pitching can occur at the same time as resonant rolling, if the
ship is less than half the wave-length and steers a sensitive course
(see Section 5 and Figure 7). Therefore the geometry of the
butterfly may be relevant to the study of capsizing of small vessels
in heavy seas. Of the 13 merchant ships that were known to have
capsized and sunk during 1975, 11 were small cargo or fishing
vessels of 850 tons or less [10]. In Section 14 below we discuss the
effect on the capsizing angles of heaving, or having the crest of a

wave amidships.,

18. MODEL INCLUDING HEAVING,

Next we enlarge the model to incorporate heaving. The
enlarged model automatically contains all the coupling between the

three modes of oscillation, rolling, pitching and heaving.
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(i) As before, the parameter space is'C = IRS.

(ii) The configuration of the ship is given by (0,q) € SxR
where 8 is the spherical coordinate, and g the vertical coordinate
of heaving. Let BB,q denote the resulting centre of buoyancy.
The state is given by

(8,q,w,p) € TXSxR),
where p denotes the wvertical linear momentum and w is as before.
(lii) The potential energy is given by
P = p(G,0,q) = Wh, + Vh2,

1
height of G above water line

Il

where h1

"2 8,9

V' = weight of water displaced

all functions
below water line

f
depth of B of 8,4

The kinetic energy is given by

K= Ke(w) + Kp) = Z w?/QIi + gpe/QW .
As before the energy

H : CxTH(SxR) —» R
is the Hamiltonian, H = P+K, and the dynamic is the damped
Hamiltonian dynamic. We define the buoyancy locus:to be the
same as before, consisting only of those centres of buoyancy for

which there is no heaving,

B = B = (B ; g=0J) .
Theorem 7. heorem 5 holds.
oH oH oH _ gp
i i v = ¥ = —_— = — = . —_— =
Proof. E is given by BH u.l,_’ 35 3p 0 Now b p

and so p = 0. We shall

h a—H—O' 1i
sowaq— implies

g = 0. Hence the problem

reduces to the phrevious case,

E C CxS, and the result
follows from Theorem 6. Let
ki = hi(G,O)
U=W -V .,

u = height of centre
of emerged slice
above water line.

Figure 22.
Heaving, while rolling and pitching.
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Then h1=k1+q i

By taking moments of the displaced water about the water-line,

W(k,=q) = Vh, = Uu .

2
Therefore
P o= Wh1 + Vh2 = W(k1+q) + W(ka—q) + Uu
= W(k1+k2) + Uu .
Therefore
dH P U du .
-a——q+ - -S-au + Ua—a , Since k1 + k2 independent of q.

From Figure 22,

ou du
—_— 2 —
U,u % 0 as g % 0, and 5q &5 5 0.
lherefore
oH
——
3 2 0 as q % 0.
herefore

%g = 0 implies q = 0, as required.

Lemma 11. For small heaving while upright the Hamiltonian

dynamic reduces to the linear theory.

Proof., In the case of a wall-sided ship of draught D we have

approximately o
W W
_Eq y U= 9-, and therefore Uu = —3- .

L=
2D
The Hamiltonian equations-give

s s oo & BH_ 8 - Wg
q = ap - W ? p = —aq - aq(uu) = D
Therefore ::; = %q, as in equation (17) of Section 6.

14. MODEL INCLUDING LOADING,

Finally we enlarge the model to incorporate loading by allowing
the weight of the ship to act as another parameter. At the same
time we place the treatment in a more elegant group-theoretical

setting.
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(i) The parameter is (W,G), where W is the weight and G
the centre of gravity. The condition for the ship to float is
W E W, where W denotes the open internal 0 < W < W, and W
is the weight that would just sink it. Therefore the parameter
space is 4-dimensional, C = WXIRS.

(ii) Let @ be the 6-dimensional group of Euclidean motions
in ]RS. Choose an arbitrary reference position of the ship, and
let @ act on this reference position by right action. The potential
energy of the water displaced is determined by g € @, and the
potential energy of the ship determined by g and the‘parameter-
(W,G), as in the last section. The kinetic energy is the classical
positive definite quadratic on T*® for a rigid body. The sum
gives the Hamiltonian

H H C X T*@ —_’R-

Remark 1. The kinetic energy depends not only upon the
weight but also upon the inertia tensor I of the ship. Therefore
both H and the dynamic depend on I, which we could take as
another B6-dimensional parameter. However in equilibrium the kinetic
energy vanishes, and so I does not affect the equilibrium manifold.
Therefore to identify the latter it is not necessary to specify I,

which can be arbitrary.

Remark 2, The above H is no good for a catastrophe
potential because it is not generic, and would give a 7-dimensional
equilibrium manifold, which is 3 dimensions too big. We therefore
need to factor out by the symmetries of H, as follows. @ acts on
the left of T*® by : .

h(g,t) = (hg,(T;h)_1t), h€® g€@,tE T;@! )

and hence on the right of H by :
(HhXec,g,t) = (c,h(g,t)) .
Define the symmetry group

Sym(H) = {h € 8; Hh = H} .

I
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Let & be the 3-dimensional subgroup of @ preserving the horizontal
(consisting of horizontal translations and rotations about vertical axes).

Lemma 12. Sym (H) = & .

Proof. The action of ® does not affect kinetic energy, and
so we are only concerned with potential energy. & does not alter
potential energy and so ® © Sym(H). Conversely Sym(H) © &,
because @/® is spanned by the 1-parameter subgroups of rolling,
pitching and heaving, which do alter H by the proof of Theorems
6 and 7.

We can now construct the model. Define the state space to
be (T*®)/®, which is a 6-vector bundle over the 3-manifold &/9.
In other words the state of the ship is determined by its
6 coordinates of momentum and its 3 coordinates of roll, pitch
and heave (while its other 3 coordinates of latitude, longitude and
course are automatically ignored). Define the potential to be the
induced Hamiltonian

H: C x (T*0)/% —>»R .

Define the dynamic to be the damped Hamiltonian dynamic. This
completes the model, and we now proceed to identify the equilibrium

manifold E.

As before let S denote the unit sphere. Let
6: 6/ —>»sS

denote the projection given by defining 6(8qg) to be the direction of
the image of the vertical under g. (This is well-defined since %
preserves the horizontal, and hence also the vertical).

Each W € W determines a buoyancy locus fBW & IRS. As W
varies from 0 to W , {(BW} is a
decreasing nested family of

convex closed surfaces filling

the convex hull of the ship's

hull, running from the boundary

w
Bo to the single point 8 at the . Y
Figure 23. Buoyancy loci (® ).

submerged centre of buoyancy.
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W W w
For each W, & has evolute ' ', normal bundle N® , and geodesic

spray
neY = {N\'gx B} —d R xs BEL RB°
Define the complete buoyancy locus to be the 3-manifold
8= {wx 8"V} c WxrR® = C ;
with complete metacentric locus,
m= {W x ‘.UI‘V\ﬁ =
and complete normal bundle and geodesic spray
NG = {W x N8V} —» cxs 22 ¢

Theorem 8. 6 induces a diffeomorphism from the equilibrium

manifold E onto the complete normal bundle N® such that the

diagram is commutative.

A Y X

I

Cx@/8 —=2 5 oxS

Therefore the catastrophe map X:E = C is equivalent to the

geodesic spray NB - C, and the bifurcation set is the complete

metacentric locus M ,

Proof. Since kinetic energy is positive definite,equilibria
lie in the zero section 8/% of the state space (T ®)/®. Fix W,
and let EW denote the corresponding section of the equilibrium
manifold. Let (pw denote the diffeomorphism

P G P B

(G,QQ)HCG,G,Q) ’ )
where 6 = 6(Rg) and g is the height of Gg above the level that G

C,OW:P

would be at angle €, were a weight W of water displaced. (This
w_w w
is well defined since ® preserves that level). Then ¢ E = N& x0
by Theorem 6. Therefore there are diffeomorphisms :
S o~ W
EW —— N(BW X Q =—— NGB
J’ c lc ic
W .
project

Rsx@/b -L&——b ROxsxR -2rolecty pos
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Premultiplying by W, and taking the union for all W € VV_, give the
result, Projecting onto C yields the required equivalence.
E ——> NG
X l lgeodesic spray
Both sides have the same image of singularities, and hence the

bifurcation set is M. This completes the proof of Theorem 8.

-W
Theorem 9. The metacentric loci E[RW and ﬂ){ﬂ are

W=
similar. .ﬂRW is obtained by reflecting M w in_the submerged

buoyancy centre aW and scaling by W_CVY_V_ .

W
Proof, Let VB denote the

volume displaced by weight W at

angle 8. Then the volume of the

ship can be written as a disjoint

union
w_ W =W

V '=V 5 u VT 6
where T is the antipodal map of S. N —
Therefore the buocyancy centre BVeV Figure 24,

-W w
is obtained by reflecting B‘EG in B and
w-w W W-w
scaling by W Therefore this similarity maps B to B .
and hence ‘.DTW to M . i
Wo . w
Corollary 1. I is symmetrical about 8 .
Corollary 2. DJIW4 is one third the size of iﬁtw/4.

The Corollaries are illustrated in Figure 25 for a typical
2-dimensional section of a ship having beam:draught ratio = 3
when W = (/2. The position of G is fixed, and the properties are
the same as those of the liner in Section 2. The metacentric
locus in Figure 25(b) has 8 cusps, and when the weight increases
or decreases 4 swallowtails appear creating 8 more cusps, 16

in all.
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/__E:-E_::\_ (b) —

(c)
=
w2
o A
S LSS éK 410 //'/

_
777777777

Figure 25, Decrease in size of miw, and capsizing angle, with weight.

As the weight increases the ship becomes more susceptible to

capsizing, not only because the bifurcation set shrinks closer to G,

but also because the capsizing angle drops dramatically. The

latter is caused by the appearance of the swallowtails. Figure 26

shows graphs of metacentric
height and capsizing angle as
functions of W, assuming G
fixed, The dynamic capsizing
angle can drop even further
if there is a shift of cargo
(see Figure 21),

This geometry is also
relevant to the capsizing of
small ships in following seas
(small means the ship length
is less than the wave-length),
for when the crest of the wave
is amidships, the buoyancy
amidships carries more of the

weight.

M K

0 woow 3w W
4

Figure 26, Metacentric height B and
capsizing angle K as functions of
wetght W.
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Therefore although the ship may be designed as in Figure 25(b),
she may unwittingly find herself riding on the crest of a wave as
in Figure 25(c). The usual approach of linear theory is to
emphasise the loss of stability due to the loss of metacentric
height [QJ, but Figure 26 suggests that the non-linear drop in
capsizing angle may in fact be more dangerous. A similar
phenomenon may occur in a head sea, if the high frequency of

encountered waves happens to resonate with heaving.

We conclude by considering the loading of cargo onto the
ship. As W increases G may move, and so the parameter (W,G)
follows a path p in the parameter space C. If p crosses M the
ship may heel, or right itself, or capsize. To illustrate this
consider two such loading
paths shown in Figure 27.

The weight of the ship is

righting

\
\
W/6 when empty and 8W/6 \
\
when full. During path P, ;

the cargo is stowed so as
to keep G fixed at the

centre ® Y of the ship,

whereas during p2 the

-
o
-
]

cargo is loaded from the 0 W

bottom upwards, as in a

tanker. Meanwhile the dotted Figure 27. Two loading paths.

line shows how the height

of the metacentre deepends upon W, The latter is drawn for a

narrows=ship, (with beam:draught ratio = 2 when W = /2)

because the narrowness lowers the path of M Wso as to cut‘p 9°

Therefore Py suffers the two catastrophes of heeling and righting,

whereas p2 suffers none because it skirts below the dotted line.
The corresponding behaviour of the ship is illustrated in

. . W
Figure 28. In each case the metacentric locus M is sketched,
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Pigure 28. Different loading paths.

and G is indicated by a blob. Certain heavy narrow old cargo
boats have a loading path like P, > but the hea:viness of the empty
boat displaces the empty position in Figure 27 to the right across
the dotted line; therefore such a boat heels with negative
metacentric height when empty, and then suddenly rights itself
during loading. If there is not enough cargo then the boat must

take on ballast before sailing.

16,  CONCLUSION

Could this geometrical approach to be of any practical use? It
is difficult to say at this stage, but we tentatively suggest two areas
for further exploration. Firstly the singularities involved are stable
and gualitatively simple phenomena, sitting halfway between the

geometric complexity of the shape of the ship and the dynamic
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complexity of its behaviour in the seaway. If details of a number
of individual ships were analysed in the light of these singularities,
it might give some further insight into how design can influence

performance, and eventually might even suggest more sophisticated

stability criteria.

Secondly there is at present a lack in the theory of non-linear
coupling. Consequently there is a lack of mathematical language in
which to express and communicate the intuition, which experienced
pilots possess, of how to handle a ship in heavy weather. It is
not enough to say that capsizing is probably due to that one-in-a-
million freak wave, because capsizings do occur more frequently
than we would wish [10], and it might be that the intuitive knowledge
of ohe experienced pilot could have saved another. A case in point
is Lindemann's discovery of how to get out of a flat spin in an
aircraft, by pushing the stick fully forward and kicking hard on the
opposite rudder., What was at one time a situation dreaded by all
fliers, is now a routine recovery procedure taught to all beginners.
Analogously in ship stability, the qualitative simplicity of the
singularities that we have been discussing might eventually lead to
a better understanding of the routine procedures for handling that

freak wave,
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