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Introduction

Bifurcation occurs in a parametrised dynamical system when a change in a
parameter causes an equilibrium to split into two. Catastrophe occurs when
the stability of an equilibrium breaks down, causing the system to jump into
another state. The elementary theory concerns dynamical systems with
steady state equilibria (point attractors), and the non-elementary theory
concerns systems with dynamic equilibria (periodic attractors and strange
attractors). In the elementary case Thom [72] has used singularities to clas-
sify both bifurcation and catastrophe, and this has led to a great variety of
applications [22]. We illustrate the contrasting styles of application in bio-
logy and physics by describing two recent examples. The first is a model by
Seif [59] concerning hyperthyroidism, and the second is a model by Schaeffer
[58] concerning Taylor cells in fluid flow.

In the non-elementary theory there is no classification yet, but Ruelle and
Takens [51] have suggested using strange attractors to model the onset of
turbulence. We describe some strange attractors and strange bifurcations,
and discuss some of their properties that resemble turbulence, such as stabi-
lity yet sensitive dependence on initial condition, and the broad band fre-
quency spectra similar to those observed by Swinney and Gollub [67]. Itis a
pleasure to acknowledge my debt to David Rand for many discussions.

1. Elementary Examples

In this section we illustrate the difference between bifurcation and catas-
trophe by two simple examples and explain the relationship between them
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by a third example containing the first two. We draw attention to the impor-
tant properties of stability, locality and symmetry. In the following two
sections we shall give definitions, and explain how these simple examples
typify the situation in higher dimensions.

1.1. The Pitchfork Bifurcation. This is the simplest example of a bifurcation,
and has a canonical equation
x =bx — x3.

Here x is a real variable and b is a real parameter; x denotes dx/dt. The
equilibrium set M is given by bx — x> =0, and is shown in Figure 1. For

1
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Figure 1

b < 0 there is a unique attractor (or stable equilibrium) at x = 0; for b > 0
there are two attractors at x = i\/E, separated by a repellor (or unstable
equilibrium) at x = 0. In Figure 1 the repellors are shown dotted. Therefore
if the parameter is increased from negative to positive the attractor bifur-
cates at b= 0.

The pitchfork is unstable and local, as we shall now explain. It is unstable
because there exist arbitrarily small perturbations with a topologically dif-
ferent equilibrium set (see Definition 2.2 below). For example the
perturbation

x=¢+ bx — x3, e>0,

breaks M into two components as shown in Figure 2. The component
containing the unique attractors when b < 0 is called the primary branch
because if b is increased from negative to positive the system will follow this
branch. The attractors on the primary branch are called primary modes, and
those on the other component are called secondary modes. The instability of
the pitchfork can be analysed by unfolding it; here unfolding means adding
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more parameters to make it stable. We shall see in 1.3 below that one more
parameter is sufficient.

Meanwhile the pitchfork is local because it possesses an organising
centre; here an organising centre means a point where the local dynamics is
equivalent to the global dynamics of the whole system (see definition 23).
The advantage is that the global dynamics can then be analysed locally at

the organising centre. In the pitchfork the organising centre is the origin
x=b=0.

1.2. The Catastrophic Jump. The catastrophic jump PQ shown in Figure 3
has a beginning P and an end Q. The beginning P is a fold catastrophe,
where an attractor and a repellor coalesce and disappear. The end Q is
another attractor. The dynamical system illustrated in Figure 3 has the
equation

Xx=a+ 3x — x3,

Figure 3
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where the variable is x, and the parameter is a. For |a| > 2 there is a unique
attractor, and for |a| < 2 there are two attractors separated by a repellor.
The equilibrium set M is the curve given by a + 3x — x> = 0, and this has
folds at P = (2, —1) and P’ = (—2, 1). If the parameter is increased from
negative to positive the system follows the lower attracting branch of M
until it reaches a = 2 where it jumps from P to Q = (2, 2), and it then follows
the upper attracting branch. In this particular example there is hysteresis if
the parameter is reduced again, because the return jump takes place at P’, at
a different parameter value a = —2. Not all jumps show hysteresis because
there may not be a return jump; for instance, in Figure 2 a decrease in b
causes a jump from the secondary to the primary mode, but there is no
return jump if b is increased again.

In contrast to the pitchfork bifurcation the catastrophic jump is stable
and non-local. Stable means that sufficiently small perturbations have
equivalent M (see definition 2.2) and hence an equivalent jump. Meanwhile
it is non-local because any analysis of the dynamics must involve both the
taking-off point P and the landing point Q, and so there is no organising
centre for the whole jump. It is true that the fold catastrophe by itself is local
because it has an organising centre at P, but this would be an incomplete
analysis of the global jump PQ.

Remark. The difference between local and global helps to explain why bifur-
cation theory is older than catastrophe theory. A local system can be lin-
earised at the organising centre and treated as an eigenvalue problem; it can
be analysed both quantitatively and qualitatively by examining the higher
order terms of the Taylor expansion at the organising centre, using the
methods of classical analysis. By contrast a non-local system may have to be
tackled by methods of topology or modern global analysis, and may yield
only qualitative rather than quantitative properties. Thus catastrophe
theory had to wait for the development of twentieth-century topology,
whereas bifurcation theory already had at its disposal nineteenth-century
analysis.

On the other hand some non-local systems can be localised by identifying
them with sections of a higher dimensional local system, with a hidden
organising centre, as illustrated by the next example.

1.3. The Cusp Catastrophe. This is the next simplest elementary catastrophe
after the fold, and has a canonical equation

X =a+ bx — x3,

where x is the variable, and a, b are parameters. The equilibrium set is the
surface M shown in Figure 4. The bifurcation set B is the image in the
parameter space of the folds of M, and is the cusp 27a* = 4b3. For parameter
points outside the cusp there is a unique attractor, and for parameter points
inside the cusp there are two attractors separated by a repellor. In Figure 4
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Figure 4

the shaded middle sheet repels, while the rest of M attracts. In applications a
is sometimes called a normal factor, because it is correlated with x, and b is
called a splitting factor, because it splits the attractor surface apart.

The cusp catastrophe is both stable and local, and contains both the
previous examples as sections. The pitchfork in Figure 1 is the section a = 0,
and hence the cusp catastrophe is its unique unfolding.* The perturbation in
Figure 2 is the section a = ¢. The jump in Figure 3 is the section b = 3. The
origin 0 is the organising centre, and any section through 0 is unstable and
local, like the pitchfork. Meanwhile, any section not through 0 that cuts the
cusp transversally is stable and non-local because it contains a jump; we call
0 the hidden organising centre of these sections. Summarising: the local
analysis of the cusp catastrophe at 0 elucidates the global dynamics of both
pitchfork and jump, and reveals their interrelationship.

14. Symmetry. The pitchfork is symmetrical with respect to change of sign
of x, but the cusp is not. We therefore call the b-parameter symmetric and the
a-parameter asymmetric. Similarly any linear combination of a, b is asym-
metric, and so the pitchfolk is the maximal symmetric section of the cusp.

In some problems the idealised model is symmetric, while the real model
is represented by an asymmetric perturbation. For example the ideal elastic
beam can be modelled by a pitchfork with b representing compression and x
the resulting buckling [76]. The ideal beam is symmetric because it can
buckle equally well up or down, but a real beam is liable to contain imper-
fections that make it behave like the asymmetric perturbation in Figure 2;
hence it will always buckle the same way when compressed because it has to
follow the primary branch. Summarising the procedure for such problems:
represent the idealised problem by a symmetric bifurcation, unfold it, take

* An unfolding is unique up to equivalence [33, 72, 76]. Golubitsky and Schaeffer [16, 17] obtain
a 1-dimensional higher unfolding because they retain b as a distinguished parameter.
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Figure 5

the maximal symmetric section, perturb it in an asymmetric direction, and
then take the primary branch.

Of course, in the above special case the pitchfork turned out to be the
same as the maximal symmetric section of its unfolding, but in the general
case the latter may be larger. For example, consider the double-pitchfork
shown in Figure 5 and given by the equations

y=by—y?
r=bz— 23

where y, z are variables and b is a parameter. Notice that b is a symmetric
parameter with respect to changes of sign of both y and z. The double-pitch-
fork unfolds to the double-cusp with 8 parameters, of which 3 are symmetric
and 5 asymmetric. One of the symmetric parameters is modal, and can be
ignored for technical reasons [5, 10, 17, 27, 76]. Therefore the maximal
symmetric section is given by adding the other symmetric parameter a,
which has the effect of pulling the two pitchforks apart along the b-axis:

y=(b+ay-y

z=(b—a)— 2.
Perturbing in the direction of an asymmetric parameter ¢ and taking the
primary branch will give a stable non-local equilibrium surface M over the

(a, b)-plane, whose shape will depend on c. An example is shown in Figure
13 below.

2. Stability and Organising Centres

In this section we give the definitions of stability and organising centre for
general flows, and in the next section we specialise to the elementary theory.
Let X be a manifold and ¢ a flow on X. Here a flow means a C®-map
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¢: R x X = X, ¢(t, x) = ¢'x, such that {¢'} is a group action of R on X. The
¢-orbit through x is (R x x). ¢ is the solution of a differential equation on
X.

2.1. Definition of Nonwandering set. Call a point x € X nonwandering if, ¥
neighbourhood N of x, Vt € R, 3s > t, such that ¢*N meets N. The set of all
such is called the nonwandering set Q. Let M denote the fixed point set (or
equilibrium set) of ¢. In the elementary case Q = M, but in the general case
Q > M because Q will also contain periodic orbits, strange attractors, etc.
(See Sections 6 and 7 for examples.) Since all orbits flow to Q the asymptotic
behaviour of ¢ is determined by Q.

Parameters. Let C be a parameter manifold. Let ¢ be a flow on X par-
ametrised by C; here pisa C*-map¢: C x R x X — X, o, t, x) = @1, x),
and ¢, is a flow on X, Vc € C. Define the parametrised nonwandering set

Q=JcxQ)=CxX,

where Q, is the nonwandering set of ¢, Vc € C. Let y: Q — C be induced by
the projection n: C x X — C. For example, in the cusp catastrophe (13
above) Q = M, the parametrised fixed point set, and y is the projection onto
R? shown in Figure 4.

2.2. Definition of Stability. Given flows ¢, ¢ on X, X’ parametrised by
C, C' with nonwandering sets Q, ' define them to be equivalent, written
¢ ~ ¢, if 3a homeomorphism o throwing orbits to orbits, and a diffeomor-
phism y, such that the following diagram commutes:

X
Q—C

Q——C
2
Define ¢ to be stable if perturbations are equivalent. Here a perturbation of ¢
means the solution of a differential equation sufficiently close to that for ¢.

Remark. The above definition is usually called Q-stability to distinguish it
from structural stability, in which the homeomorphism o and the commuta-
tivity extend to the whole of C x X. Structural stability was first introduced
by Andronov and Pontryagin [3], and the weaker definition of Q-stability
was later introduced by Smale [64] to embrace a larger class of flows.
Neither definition is generic, because Q-stable flows are not dense [2]. It was
originally hoped to find a generic definition, but hopes dwindled as more
examples were discovered. Meanwhile the importance of structural stability
and Q-stability was emphasised by theorems characterising them [39, 44, 48,
49, 65). For simplicity of exposition we have chosen Q-stability in this paper.
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In elementary theory the situation is much tidier because the definition is
generic, and for low dimensions of C one can sharpen « to be a diffeo-
morphism, as we explain in the next section. For more detailed discussions
of stability see [1, 30, 64, 72, 73].

2.3. Definition of Organising Centre. Given a flow ¢ on X parametrised by
C we call P € Q an organising centre for ¢ if 3 arbitrarily small neighbour-
hoods @, C’ of P, P in Q, C, a homeomorphism o throwing orbits to orbits,
and a diffeomorphism y, such that the following diagram commutes:

x|
Q, P C
| l 1 y
QP — C

X

Call ¢ local if it has an organising centre.
2.4. Lemma. The cusp catastrophe is stable and local.

Proor. For the stability see [76]; we verify here that it is local. The cusp is
defined in 1.3 above and has X = R, C = R%, and Q= M < C x X given by
a+ bx — x*=0. Given ¢ > 0, let C’ be the open disk a* + b* < ¢, and let
M’ =y 1C. Definea: M'> M, y: C' > C by

a(a, b, x) = (s*a, s?b, sx)

y(a, b) = (s%a, s*b),  s=sec ;; (a* + b?).

This satisfies commutativity, and hence the origin is an organising centre.
Notice that since this example is elementary o is not only a homeo-
morphism but also a difffomorphism, and it extends to the ambient space.

2.5. Definition of Bifurcation Set and Catastrophe Set. Given a flow ¢ on X
parametrised by C, let Q, denote the map ¢ — Q, from C to the space of
closed sets of X, with the Hausdorff topology. Call a parameter point ¢
regular if Q, is constant in a neighbourhood of ¢, up to equivalence. Define
the bifurcation set B to be the set of non-regular points. Define the catas-
trophe set K to be the closure of the set where Q, is discontinuous. Therefore
we have closed subsets

KcBcC.

A point in K is called a catastrophe point and a point in B — K is called a
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bifurcation point. Thus Q, is continuous in the neighbourhood of a bifurca-
tion point, but discontinuous in the neighbourhood of a catastrophe point.

For example, the pitchfork Q, is continuous, so K = J and the organis-
ing centre is a bifurcation point; that is why it is called the pitchfork bifurca-
tion. By contrast, in the cusp catastrophe Q, is continuous at the organising
centre but discontinuous elsewhere on the cusp, so K = B and the organis-
ing centre is a catastrophe point; that is why it is called the cusp catastrophe
rather than the cusp bifurcation. For a philosophical discussion see Thom
[72].

3. Elementary Theory

In this section we explain Thom’s density and classification theorem for
elementary catastrophes.

3.1. Definition of Elementary. Given a flow ¢ on X, call ¢ elementary if
there exists a Lyapunov function. Here a Lyapunov function means a
C*-function f: X — R that decreases strictly along orbits of ¢. If ¢ is elemen-
tary the nonwandering set of ¢ is the critical set of f, given by df = 0, and the
attractors of ¢ are the minima of f.

We now introduce parameters. Given a flow ¢ on X parametrised by C,
call ¢ elementary if there exists a parametrised Lyapunov function f. Here f
is a C*-function f: C x X > R, f(c, x) =f.x, such that £, is a Lyapunov
function for ¢, Vc € C. Therefore

Q = M = critical set of f, given by d, f=0.

Examples. Gradient flows are elementary; here a gradient flow means the
solution of a gradient differential equation X = — Vf, and this is elementary
because f is a Lyapunov function. For instance, the cusp catastrophe is
elementary because it is gradient:

)
x=—-Vyf= —6—f, where f= 4x* — 1bx? — ax.
X
Therefore Q = M is given by
of
de:a =x*—bx—a=0.

Gradient-like flows are also elementary [64]. On the other hand, the
examples in Sections 6 and 7 below are non-elementary because they contain
periodic orbits.
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Remark. The restriction to elementary theory is a severe restriction, but
nevertheless there are many phenomena in which steady-state equilibria are
predominant, and so the elementary theory does have wide application [15,
21, 22, 43, 72, 76]. In the elementary theory the asymptotic behaviour of the
flow ¢ is determined by the critical set M of its Lyapunov function f, and so
the mathematical trick is to switch attention from ¢ to f. This trick does have
some limitations [19] but is adequate for most applications. The mathemati-
cal advantage of switching to functions is that we can sharpen the definition
of stability and use results from singularity theory, as follows.

3.2. Definition of Stability of Functions. Given functions f, f* on X, X' par-
ametrised by C, C’ define them to be equivalent, written f~ f, if 3 diffeo-
morphisms «, 8, y such that the diagram commutes:

nxf n

CxX —CxR —C

L

CxX——CxR——C
This induces an equivalence of critical sets:

4

M——C

a,Ml ) l

M/ - Cl
Therefore if f, ' are Lyapunov functions for the flows ¢, ¢’ then
f~f=d~¢.

Let F = C*(C x X), the space of all C*-functions on X parametrised by C,
with the Whitney C*-topology [76]. Given fe F call f stable if it has a
neighbourhood of equivalents. If fis stable then its critical set M is a mani-
fold the same dimension as C, and «| M above is a difffomorphism.

Example. Morse functions are stable; here a Morse function means a func-
tion on R" that is quadratic of rank n, and independent of the parameter C.

The cusp catastrophe has a stable Lyapunov function, f=x*—
2bx? — 4ax (multiplying by 4 to get rid of fractions). The germ of f at the
organising centre is x*, and, conversely, f is the unique unfolding of its germ,
up to equivalence. Here unfolding means stabilising by adding the minimum
number of parameters. In this sense the cusp is uniquely determined by its
germ. (For proofs see, for example, [76, Chapter 18].)
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Analogous to the cusp there are 11 elementary catastrophes* for
dim C < 5, determined by the germs x3, x*, x°, x, x7, x2y + y3, x%y + *,
x?y 4+ y5, x* + y* and each one is stable and local. Moreover, this is a
complete classification in the sense of Theorem 3.4 below. In order to state
the classification theorem globally it is necessary to localise the definitions of
equivalence and stability, as follows.

3.3. Definition of Local Stability. Given functions f, /' on X, X’ par-
ametrised by C, C’, and points y, y in C x X, C' x X', define them to be
locally-equivalent, written (f, y) ~ (f*, '), if 3 neighbourhoods N, N’ of y, y’
such that f|N ~ f|N'. Given f € F, where F = C*(C x X), call f locally-
stable if, Yy € C x X, V neighbourhood N of y, 3 a neighbourhood V of
Vf" e V,3y e N, such that (f, y) ~ (f’, y'). Notice that stable implies locally-
stable, but not conversely. Local-stability implies that the critical set M is a
manifold, of the same dimension at C.

3.4. Theorem (Thom [72] and Mather [33]). If dim C < 5 then locally-stable
functions are dense in F. If f is locally-stable then at each point it is locally-
equivalent to either a linear function, or a Morse function, or the product of an
elementary catastrophe with a Morse function.

For a proof see, for example, [31, 76 Chapter 18].

This theorem explains why the elementary catastrophes and their sections
are so universal. As in 1.3, each elementary catastrophe has two types of
section, depending upon whether or not the section goes through the organ-
ising centre. If it does then the section gives an unstable local bifurcation like
the pitchfork. If it does not then the section will generically give a stable
non-local system like the jump, consisting of a configuration of lower dimen-
sional catastrophes. This configuration is determined by the hidden organis-
ing centre, hidden because it lies off the section. When such a configuration
is observed it may be useful to look for a hidden organising centre, because
the latter may provide an analysis of the dynamics, as illustrated in 5.4
below. Summarising: the identification of pitchfork and jump as sections of
the cusp typifies the relationship between bifurcation and catastrophe in
higher dimensions.

In the next two sections we illustrate the use of elementary catastrophe
theory by describing two recent applications. The first is in medicine, and
typifies applications in the biological or social sciences where the catas-
trophe is taken as a hypothesis. The second is in fluid mechanics, and typifies
applications in the physical sciences where the singularity is derived from
basic underlying assumptions, such as conservation laws or variational prin-
ciples, etc.

* Thom’s list of elementary catastrophes [72, 76] has been considerably extended to higher
dimensions by Arnold:[5], but the definitions have to be modified to allow for the appearance of
modal parameters.
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4. Hyperthyroidism

This is a model by Seif [59]. In normal individuals there is a hormone*
chain:

hypothalamus

La

pituitary
negative p
feedback ’
thyroid
l 2
metabolism

For instance, a sensation of cold would be registered in the brain by
activity of the hypothalamus, causing a release of hormone a into the blood
stream, which triggers the pituitary gland to release hormone b, which trig-
gers the thyroid gland to release hormone ¢, which stimulates the metabo-
lism throughout the body, changing chemical energy into heat. The negative
feedback means that large c (in other words, a high concentration of ¢ in the
blood) causes the pituitary to stop releasing b. There are two ways this chain
can go wrong, hypo and hyper, as follows.

4.1. Hypothyroidism. Hypothyroidism means too little ¢. This in turn
causes large b due to lack of negative feedback. Also, every time the hypotha-
lamus receives a stimulus and releases a in an attempt to get the metabolism
going nothing happens, and so it continues to release a, reinforcing the large
b. The typical cause of too little ¢ is a lack of iodine, without which the
thyroid cannot manufacture c¢. Typical symptoms of hypothyroidism are
feelings of cold and sluggishness, and a tendency for the individual to grow
fat. A cure is to inject c.

4.2. Hyperthyroidism. Hyperthyroidism means too much c¢. This in turn
causes small b, due to the feedback. The typical cause is the presence of some
immunoglobulin b* in the blood that accidentally resembles b, and which
the thyroid mistakes for b. Since b* is always present in the blood the
thyroid is permanently turned on to the production and release of c. The
original appearance of b* may have been triggered by some quite indepen-
dent immunological response, but once triggered it is always present, thus
inducing a permanent state of hyperthyroidism. Typical symptoms of hyper-
thyroidism are that the individual feels hot and irritable, becomes overactive
and thin, develops bulbous eyeballs and a bulge in the neck called a goitre

* a = TRH(thyrotropic releasing hormone) = protirelin.
b = TSH(thyroid stimulating hormone) = thyrotropin.
¢ = index measuring thyroxine (T,) and triiodothyronine (T3).
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due to the enlarged overactive thyroid. A temporary treatment is to inject
drugs that interfere with the metabolism, thus counteracting the effect of
large c¢. The permanent treatment is to remove or destroy some of the
thyroid gland until what is left produces the desired amount of c.

Seif applied this standard treatment to 78 hyperthyroid patients, but
found that although the treatment produced normal levels of b and ¢, and
indeed cured two-thirds of his patients, the other third were apparently not
properly cured because they began to display some of the opposite symp-
toms of hypothyroidism, such as the inability to react to cold.

4.3. Pituitary Failure. What had happened was that the pituitary was no
longer responding to the a-hormone; evidently during the long period of
high negative feedback, in a desperate attempt to stem the flood of c, the
pituitary had given up releasing b, and consequently lost its response-ability.
Seif measured this response-ability by injecting a standard dose of a and
observing the resulting change in the level of b. Let x = b, /by, where b, is
the initial level, and b, the level twenty minutes after injection, which is the
normal time for maximal response. He found that for normal individuals
and for the successfully cured two-thirds x had mean 7, but for hyperthyroid
patients and for the abnormal third of treated patients x = 1. For conven-
ience we shall refer to the abnormal third by the single word treated. Figure
6 sketches the four types on the (b, c)-plane, and Figure 7 sketches their
response to the injection of a.

Seif had collected 422 measurements during the diagnosis and treatment
of 314 patients, but at this point he was stuck for a conceptually simple way
to present, or think about, his data. That is until he happened to hear a
lecture mentioning the cusp catastrophe, which he immediately recognised as
relevant, because x was bimodal for some points in the (b, c)-plane but
unimodal for others. The resulting model is shown in Figure 8.

4.4. Cure. The diagram immediately suggested the possibility of catastro-
phic jumps o and B. The jump « represents the onset of hyperthyroidism, and
the jump f represents a possible cure for the treated patients. Their treat-
ment so far is represented by the path HK in the parameter space, which

log ¢
£
hypo x=1
hypo
normal
normal x =1
treated treated
hyper
hyper
L v time
< 0 20

Figure 6 Figure 7
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normal

treated

Figure 8

takes about 6 weeks, and is the slow change in the average levels of b, ¢
resulting from the removal of some of the thyroid gland. The additional
treatment would be to steer the patient along the path KL, until the left side
of the cusp is crossed, where the patient will jump back to normal. This
guiding of the patient through hypothyroidism takes about another 3 weeks
and is achieved by drugs that stimulate the production of a by reducing the
metabolism, and suppress the negative feedback by interfering with the pro-
duction of c, thus inducing the pituitary to very gradually raise the average
level of b. To Seif’s delight this new additional treatment successfully cured
the remaining third of his patients. Evidently the other two-thirds had cured
themselves either by already crossing the left side of the cusp or by going
round the top.

It could be argued that, having identified the pituitary as the culprit, the
guiding of the patient through hypothyroidism would have been a logical
way to try and cure the patient anyway, without reference to Figure 8.
However without Figure 8 one would not have predicted the suddenness of
the jump B, nor the stability of the patient’s normality immediately after the
jump. Therefore Figure 8 makes the monitoring of the additional treatment
conceptually very easy, because all the doctor has to do is to make regular
injection tests until he observes a jump in x, and he can then send the patient
home cured. Going back to our original discussion at the beginning of the
paper, of the relationship between the pitchfork and the jump, what was first
observed in this application was the bifurcation, and what was successfully
predicted as a result was the jump.
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4.5. Data Fitting. The next step was to fit a cusp to the data. Theoretically
(Theorem 3.4) the cusp surface is only differentially equivalent (Definition
3.2) to the standard surface (Example 1.3), but near the cusp point a linear fit
is a good approximation. Therefore Seif assumed that, up to additive and
multiplicative constants, the variable was log x, the normal factor was ¢, and
the splitting factor — b; he calculated the constants by a least squares fit on x
using an iterative computer programme. The resulting cusp lines are shown
in Figure 9; the curvature of the right side is reversed due to the log-scale.
Notice that, as anticipated from Figure 8, normal individuals are bounded
on the right by the right side of the cusp, and the treated patients are
bounded on the left by the left side of the cusp.

100 - — T
|
50 { l
30 1 <., [
lOgﬂ 20 ‘l
10 1 -
0 ~ * B normal
E I A hypo
@® hyper
O treated
I
I
0.1 + s L } —t
1 20 50 100 400 10° 5 x 103
log ¢

Figure 9 (Seif [59]).

4.6. Micro-Model. The next task was to explain the cusp, because a good
model should not only provide a structural description at the phenomeno-
logical level, but also admit a reductionist explanation at the micro-level.
Therefore Seif constructed a stochastic microscopic model of granule forma-
tion, stimulus-secretion, and diffusion, of the b-hormone in individual pitui-
tary cells. He then showed that the resulting macroscopic behaviour of the
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pituitary gland would have an equilibrium surface with the same formula
that he had used for the data fitting. Therefore Figure 8 represents not only a
distribution of patients, but also the behaviour of the pituitary gland.

4.7. Summarising. Seif’s model is useful in five ways. Firstly, it provided a
simple conceptual grasp of the problem. Secondly, it suggested a successful
cure. Thirdly, it enabled the data to be fitted. Fourthly, it stimulated the
construction of a micro-model, and provided an objective for the latter to
explain. Fifthly, it provides a theoretical framework for ongoing research into
the molecular substructure.

5. Taylor Cells

This is a model by Schaeffer [58] to explain the experimental results of
Benjamin [6] in the classical Couette [11]-Taylor [71] problem in fluid
mechanics (see Figure 10).

Figure 10

Water is placed between two vertical concentric cylinders, and the inner
cylinder is rotated causing the fluid to rotate. We take as a parameter the
Reynolds number R, which is proportional to the speed of the inner cylinder.
For small R the fluid velocity field ¢ is azimuthal, in other words all the
streamlines are horizontal circles concentric with the cylinders. If the end
effects are ignored (or equivalently if the cylinders are infinitely long) it is
easy to calculate £ from the Navier-Stokes equations [26]; £ depends on the
cylinder speed but turns out to be independent of viscosity, and is called
Couette flow [11].

If R is increased then Couette flow becomes unstable; cells appear, called
Taylor cells, and the fluid settles down into a new type of steady flow called
Taylor flow [71]. Each cell is a horizontal solid torus of approximately
square cross-section. Inside each cell the flow is spiral; there is one horizon-
tal circular streamline in the interior of the cell and all the other streamlines
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spiral round it. Alternate cells spiral clockwise and anticlockwise, as shown
in Figure 11. The boundaries between the adjacent cells are horizontal, and
alternate boundaries spiral inwards and outwards. Intuitively it is the
outward spiralling boundaries that are being driven by centrifugal force, and
they in turn drive the cells.
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We now want to take the end effects into account. Define the aspect ratio
to be p = l/d, where [ is the length of the cylinders and d the clearance
between them. Since the cells are approximately square in cross-section, the
number of cells is approximately equal to p. At the ends of the cylinders the
velocity is zero due to friction, and so in the boundary layers at the ends
the velocity is small; therefore the centrifugal force is small, and this biases
the end layers to spiral inwards. This bias normally causes an even number
of cells to form, as in Figure 11. If, however, we make p = 3, then the poor
fluid does not know whether to form 2 cells or 4 cells, and this is
the phenomenon we want to discuss.

5.1. Experimental Data. Benjamin [6] performed the experiment, taking as
parameters the Reynolds number R and the aspect ratio p. He found that if p
is fixed and R varied then at certain critical values of R the fluid jumps from
2 cells to 4 cells or vice versa. By “jump” we mean that on one side of the
critical value both configurations of cells are stable, but if R is moved across
the critical value then one of the configurations loses its stability, and the
fluid will settle down into the other; the time it takes to jump will depend
upon the viscosity. Let C denote the region of the parameter plane in which
the experiment is valid. Benjamin plotted the observed jump points in C and
obtained the cusp-shaped bifurcation curve in Figure 12.

Theoretically, if we choose a suitable variable v and plot v over C then we
should obtain the cusp catastrophe surface M shown in Figure 13. For
example, let v be the inward radial component of the velocity at a point
halfway up the cylinders midway between them. This is a suitable variable
because v < 0 in the 2-cell flow, v = 0 in the Couette flow, and v > 0 in the
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Figure 12

4-cell flow, as can be seen from Figure 11. Therefore for large R the lower
sheet of M in Figure 13 represents the 2-cell mode and the upper sheet the
4-cell mode.

Figure 13

5.2. Digression on the Meaning of “ Suitable.” Let X be the co-dimensional
space of all possible fluid velocity fields in the apparatus. The Navier-Stokes
equations determine an evolution equation E on X, parametrised by C. The
equilibrium set of E is a cusp catastrophe surface M = C x X.Letv: X - R
be a function, for example some measurement of the velocity field. We call v
a suitable variable if the composition

M—5CxX 2, CxR

is an embedding. Notice that 1 x v crushes the co-dimensional space C x X
down onto the 3-dimensional space C x R, but does not crush M. Notice
also that the dynamic E sits up in C x X, and that there is no dynamic in
C x R, only the equilibrium set M and the catastrophic jumps, as follows.
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5.3. Qualitative Description. The two important points of the bifurcation set
are the cusp point P, and the point Q where the tangent is parallel to the
R-axis. These points divide the bifurcation set into three arcs a, f3, y as shown
in Figure 12. The reason why these points are important is that in each
experiment p is fixed and so the variation of R is represented by a section
p = constant; all such sections are stable except those through P and Q,
where the equivalence class of section changes, as shown in Figure 14. If

v P <pp v p=pp v PP<P <P

R . R

9_
oL
153

Figure 14

p < pp then the 2-cell mode is primary and the 4-cell mode secondary; if
p > po the situation is reversed. Unstable modes are shown dotted. If
pp < p < po there is a hysteresis on the primary branch between an incipient
4-cell mode and the 2-cell mode, while the 4-cell mode is secondary. If the
system is in the 2-cell mode and R is decreased across the arc a then it will
jump into the 4-cell mode. The reverse jump occurs if R is increased across f
or decreased across y. A similar phenomenon happens in embryology [76].

5.4. Mathematical Analysis. Benjamin was unable to solve the Navier—
Stokes equations because of the difficulties presented by the boundary con-
ditions at the ends of the cylinders. Taylor’s original solution [76] had
avoided this difficulty by assuming infinitely long cylinders and proceeding
as follows. For small R the Couette flow ¢ is the unique attractor of the
evolution equation E on X, and so he used (R, &) as an organising centre; by
linearising E at the organising centre he was able to calculate the critical
Reynolds number R, where £ becomes unstable, and express the Taylor flow
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as a perturbation of . The reason that Benjamin was unable to follow the
same procedure was that Figure 13 is non-local since there are two qualita-
tively significant points P and Q.

Schaeffer [58] realised this and had the brilliant idea of seeking a hidden
organising centre. We sketch his procedure briefly, as follows. His first trick
was to introduce a hidden parameter 7 to represent the friction at the ends of
the cylinders. Then 7 >0 in the experiment, but t =0 at the organising
centre, and so Figure 13 will turn out to be a section of a higher dimensional
catastrophe not through the organising centre. This explains why it is stable
and non-local (see 3.4). When 7 > 0 the fluid velocity at the ends of the
cylinder has to vanish due to friction, but when t = 0 it need not vanish. This
has the great advantage of allowing Couette flow ¢ to become a valid solu-
tion of the equations, and so Schaeffer was then able to follow Taylor’s trick
of making it the organising centre. .

Let R, be the critical value of R at which ¢ becomes unstable with respect
to the Taylor 2-cell flow. Taylor [71] showed that the 2-cell flow is repre-
sented by a perturbation ¢ + 1y, where 7 is a velocity field orthogonal to &,
and y is a real variable obeying a pitchfork bifurcation with organising
centre (R,, 0), as shown in Figure 15. If R < R, then ¢ is an attractor, given

Figure 15

by y=0. If R > R, then the upper branch in Figure 15 is an attractor,
representing the 2-cell flow shown in Figure 11, and the lower branch is
another attractor representing the similar flow spiralling in the opposite
direction, with both ends spiralling inwards rather than outwards (which is
equally valid when 7 = 0 due to the absence of any frictional bias). Similarly,
let R, be the critical value at which ¢ becomes unstable with respect to the
4-cell flow, and let ¢ + {z be the corresponding perturbation of ¢, where ( is
a velocity field orthogonal to ¢, and z a real variable obeying another pitch-
fork with organising centre (R4, 0).

Now consider the double perturbation ¢ + ny + {z. If R, # R, the two
pitchforks have different organising centres, and so the next trick is to make
R, = R, so as to bring them together into a double-pitchfork (see Figure 5).
This trick is possible because R, and R, are functions of the aspect ratio p,
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as shown in Figure 16. R, has a minimum near 2, R, has a minimum near 4,
and their graphs cut at p,, say, near 3. Putting p = p, makes R, = R,.

In the classical language this makes the problem into a double eigenvalue
problem. In the language of singularity theory: unfold the double-pitchfork
into the double-cusp catastrophe, restrict to the maximal symmetric section,
perturb in the direction of the asymmetric parameter 7, and take the primary
branch M (see 1.4). Now p is the other symmetric parameter besides R, and
so M will be a connected surface in the 4-dimensional (R, p, y, z)-space.
Finally, let v = z — y. Then v is a suitable variable (in the sense of 5.2) and
so the map (y, z) v induces an embedding of M in the 3-dimensional
(R, p, v)-space, recovering Figure 13. Of course, v is not the same variable
as we had before, but the surface is equivalent.

The reason for restricting to the maximal symmetric section is that, when
1 =0,if ¢ + ny + {zis an attractor, then ¢ + yn + (z will also be attractors;
therefore the equilibrium set is symmetric with respect to change of sign of y
and z. We need to explain, however, why we have ignored the 3-cell modes,
which are equally valid when t = 0, and which bifurcate off ¢ at a lower
Reynolds number than R, = R, when p = p,. They can be ignored because,
when 1 > 0, the frictional bias towards inwards spiralling at both ends has
the effect of disconnecting both 3-cell modes from the primary branch M, so
that they become secondary modes that will not be observed without special
initial conditions. Similarly the lower branches of both the 2-cell and 4-cell
pitchforks are disconnected from M, leaving in M only the two modes y,
z > 0 illustrated in Figure 11.

5.5. Summary. Schaeffer found a hidden organising centre at which the
Navier—Stokes equations could be analysed to provide a theoretical explan-
ation for Benjamin’s experimental data. It would be even more interesting if
his techniques could be extended to non-elementary theory to embrace the
periodic, quasi-periodic, and turbulent motion at higher Reynolds numbers
[12, 13, 67]. This is the theme of the rest of the paper.
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6. Non-elementary Examples

In this section we illustrate the difference between bifurcation and catas-
trophe in non-elementary theory by describing some examples analogous to
those in Section 1. The main difference is that here the flows contain periodic
attractors, or limit cycles. We define the Bowen-Ruelle measure [9] on an
attractor and show that it can vary continuously even when there is a
catastrophic Q-explosion. For more examples of bifurcation see [1, 32, 36,
68, 69].

6.1. The Hopf Bifurcation [25]. This has canonical equations

d=1

i=br—r?
where (r, 0) are polar coordinates for the space R?, and b is a parameter. When
b < 0 the origin O is an attractor; when b > 0 it becomes a repellor, and a
new periodic orbit a appears at r = \/5 (see Figure 17). Therefore the non-
wandering set is
o, b<0
|0 U a, b>0.

9 (o

b<0 b>0

Figure 17

By Hopf’s theorem [25, 32] this example is stable and local, with organising
centre at the origin, r = b = 0. Since Q, depends continuously on b, the point
b =0 is a bifurcation point.

6.2. An Q-Explosion. Let the state-space be the unit circle «, with coordinate
0,0 < 0 < 2w, and let a be a parameter. Consider the equation

#=a—cosé.

When —1 < a < 1 there is a repellor Sat6 = cos™! g, and an attractor 4 at
6 = —cos™ ! a. When a =1 these two fixed points coalesce into a single
fixed point N at 6 =0, and when a > 1 they disappear (see Figure 18).
Therefore the nonwandering set is

(AuS, —l<ax<1
Q,=¢N, a=1
‘a, a>1.
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a<l a=1 a>1

Figure 18

Although locally there is a fold catastrophe at N, globally there is a Q-
explosion from the point N to the whole circle a. Since Q, is discontinuous at
a =1 the latter is a catastrophe point. Therefore qualitatively we may call
this example a catastrophe, but quantitatively there are measure-theoretic
arguments for calling it a bifurcation, as we shall see in 6.6 below.

Since there is no organising centre, this example is stable and non-local.
However, we can find a hidden organising centre, as follows. First embed the
unit circle in R* and extend the equation to:

O=a—rcosf
F=r—r.
This preserves the attractor A, converts the previous repellor S into a saddle,
and introduces a repellor R at the orign. When a = 1 the attractor coalesces
with the saddle at the saddlenode N, and when a > 1 they disappear leaving
only the attractor « and repellor R (see Figure 19). The extended system is

a<l a=1 a>1
o
\ \
N
A /

Figure 19

again stable and non-local, but we can localise it by introducing another
parameter b:

O =a—rcosb
i =br—r?

This 2-parameter system is local, with organising centre at the origin; there-
fore the latter is a hidden organising centre for the Q-explosion, which is
given by the section b = 1. The bifurcation set in the parameter space con-
sists of the line b =0 of Hopf bifurcations, and the parabola a?> =b of
Q-explosions, as shown in Figure 20.



132 E. C. Zeeman

Q-explosion

@ @7 HTopfa
£ l

Figure 20
6.3. A Saddle Connection Catastrophe. Let the state space be R?, and let a be
a parameter. The saddle connection is illustrated in Figure 21, and we give

equations for it below, but first let us describe it qualitatively.

a>?2 a=2

Figure 21

When a > 2 the nonwandering set consists of two points, a repellor R and a
saddle S, and the inset of S curls inside the outset. When a = 2 the inset
coalesces with the outset to form a saddle connection or homoclinic orbit,
x%. As a result the nonwandering set has exploded to R U S U x (x is non-
wandering because of the orbits spiralling out from R). When a < 2 the inset
has crossed the outset creating a new periodic attractor, a. This is a catas-
trophe both qualitatively and quantitatively, qualitatively because Q, is
discontinuous at a =2, and quantitatively because there is a measure-
theoretic discontinuity as the new attractor captures its basin of attraction
(shown shaded in Figure 21).

This example is stable and non-local, but it has a hidden organising centre
at the origin of the following local 2-parameter system:

(ot

=%

O0H
y=§ + y(a — H), where H = x> — 3bx + y°.

The reader will recognise this as a parametrised damped Hamiltonian
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Figure 22

system [1], with Hamiltonian H and a damping that drives it to the energy
level H = a. Figure 21 is the section given by b = 1. When b = 1 the level
curves of H are shown in Figure 22; there is a minimum at (1, 0) where
H = -2, and a saddle at (— 1, 0) where H = 2. When a < — 2 the minimum
is an attractor of the flow, and when a > —2itisa repellor; therefore when
a = 2 there is a Hopf bifurcation at the minimum. When —2 < a < 2 the
energy level H = a contains a compact component « which is the periodic
attractor shown in Figure 21. When a = 2 the energy level H = 2 contains
the homoclinic orbit x. When a > 2 the energy level H = a no longer con-
tains a compact component and so the attractor disappears. Therefore a = 2
gives the saddle connection catastrophe, as illustrated in Figure 21.

When b > 0 the fixed points occur at +f and the bifurcations
occur at a = +2b\/ b; therefore as a, b —>0 the quahtatlve picture shrinks
into the organising centre. When a # 0 and b =0 the two fixed points
coalesce in a fold catastrophe or saddlenode. Therefore the bifurcation set in
the parameter space consists of the a-axis and the cusp a? = 4b3, as shown in
Figure 23. The negative a-axis comprises attractor-saddlenodes and the pos-

saddle
connection

<2

| fold
i

a

Figure 23
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itive a-axis repellor-saddle-nodes; the left branch of the cusp comprises Hopf
bifurcations, and the right branch saddle-connection catastrophes.

6.4. Definition of the Bowen—Ruelle Measure [9, 52, 57]. In elementary
theory the phase portrait provides an adequate description of the asymptotic
behaviour because the attractors are points. In the non-elementary theory,
however, the phase portrait may be inadequate from the point of view of
measurement because, for example, it does not provide the frequency of a
periodic attractor, nor the frequency spectrum of a strange attractor. What is
needed in addition to the attractor is a measure on it that describes the time
spent in different parts of it, as follows. Given a flow ¢ on X, and a prob-
ability measure m on X, define the time average of m to be the measure

1 T
u= lim ﬂ d'm dt.
T— o ]

We call u the Bowen—Ruelle measure. Roughly speaking m represents the
initial conditions and u the asymptotic behaviour. For instance if the initial
position is x choose m to be the Dirac measure m = J, with support x. If the
initial position is uncertain represent this uncertainty by a suitable contin-
uous probability measure m on X. Now for some examples of p.

(i) If A is a point attractor and the support of m is contained in the basin of
attraction of A then u=94,.

(i) If o is a periodic attractor and the support of m is contained in the basin
of a then u has support a, and at each point of a the density of u is
inversely proportional to the speed. Therefore in both these examples
the Bowen—Ruelle measure exists, and is invariant, ergodic, and
independent of m.

(iii) If 4, B are two point attractors, and the support of m is contained in the
union of their basins, and m,, my are the measures of their basins, then
u=myo,+ mgdg.

6.5. Parametrised Measures. Given a parametrised system, and a
continuous* probability measure m, there is a time average u, for each
parameter point ¢, and so we can ask the question whether or not u, depends
continuously on c. At regular points and bifurcation points g, is continuous,
and so it is a question of dividing the catastrophe points into those where the
measure is continuous and those where it is not, as follows.

(i) At the catastrophic jump in 1.2 the measure is discontinuous because of
the sudden disappearance of a basin of attraction.

(ii) At the cusp catastrophe in 1.3 the measure is continuous, but is a limit
point of discontinuities.

* For parametrised systems it is better to have m continuous in order to avoid the artificial
discontinuities in p, that arise from discontinuities in m. For example if m = J, and § is the
separatrix between two basins, then any change in ¢ that moves S across x will cause a jump
in g.
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(iii) At the saddle connection catastrophe in 6.3 the measure is discontin-
uous because of the sudden capture of a basin of attraction. To be
precise, u, is discontinuous as a \, 2.

(vi) Atthe Q-explosion in 6.2 the measure is, surprisingly, continuous. This is
the most interesting example because Q, is discontinuous at a = 1.
Qualitatively it is a catastrophe, but quantitatively it behaves like a
bifurcation. In an experiment one would expect to observe qualitative
change, but at the same time expect quantitative time-average measure-
ments to vary continuously. A similar phenomenon is sometimes ob-
served at the onset of turbulence, and in the next section we shall
suggest a generalisation of this example as a possible model for
turbulence. Meanwhile since this is the simplest example of the phen-
omenon it is worth giving the proof

6.6. Lemma. At the Q-explosion in 6.2 the Bowen—-Ruelle measure is
continuous.

Proor. If a = 1 then, for any m, u, = dy the Dirac measure at N. If a < 1
then, for any m # g, 4, = 64, and so u is continuous as a 1. If a > 1 then
Ua is distributed over a with density ~ (a —cos 6)™!, and so to prove
U, = Oy we have to show that the flow lingers longer and longer in the
neighbourhood of N as a \, 1. More precisely, it suffices to show:

Ve > 0, In >0, Va,1<a<l+n=>pf[—¢e]>1—c

Let
£ do 2n—¢ do
A_.[ a—cos B’ B_J‘E a—cos 6’
It suffices to show B < ¢A, for then
A B B
,u,,[—s,s]—A+B—1—A+B>1—Z>1—s.
LetK=j"_E(d0/1—c059).Ifa>1thenB<K.Ifa<1+r7then

A>J“ dao
e (L+n)—(1-6%2) \/" f

If n is sufficiently small then A > K/e. Therefore, B < K < €A, as required.
This completes the proof that yu, is continuous at a = 1. O

7. Strange Attractors

In this section we define and construct some strange attractors. We give both
a topological definition 7.1 and a measure theoretic definition 7.8. The
strange attractors that are best understood are those that satisfy axiom A4
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(see 7.6), but models of turbulence are more likely to need non-axiom A
attractors (see 7.9). In particular the onset of turbulence would be modelled
by a strange bifurcation, and in 7.11 we describe an example in which
a periodic attractor runs into a strange saddle causing an Q-explosion into
a strange attractor. For further examples of strange attractors see [4, 7, 8, 20,
23, 24, 28, 29, 34, 38, 42, 45, 50, 55, 60, 61, 64, 66, 74, 75].

7.1. Topological Definition of Attractor. An attractor A of aflow ¢ on X isa
subset that is attracting and indecomposable. Here attracting means 3 a
closed positively-invariant* neighbourhood N of A such that
(Ni>o ¢'N = A. Indecomposable means 3 a point in A whose @-limit* is A.

It follows that A is a closed invariant subset of the nonwandering set Q.
One can also deduce that A is minimal in the sense that if one attractor
contains another, or if two meet, then they are equal. Define the basin of
attraction of A to be the set of points whose w-limit is contained in A; it
follows that the basin is an open invariant set containing N. Call A stable if
perturbations of ¢ have an equivalent attractor nearby.

7.2. Examples. There are three types of familiar attractors, and all the rest
are called strange attractors (because they have only really been studied in
the last 20 years or so). The familiar attractors are:

(i) Point Attractor. A point attractor is stable if hyperbolic; here hyperbo-
lic means the eigenvalues have non-zero (and hence negative) real part.

(ii) Periodic Attractor. Here the attractor is diffeomorphic to the circle
T = R/Z, and is stable if hyperbolic.

(iii) Quasi-periodic Attractor. Here the attractor is difftomorphic to an
n-torus, T" = R"/Z", n > 2, and the flow is equivalent to an irrational
flow, given by ¢'x = x + wt, where w = (w4, ..., m,)is constant and the
w; are irrationally related. Therefore all orbits are dense. A quasi-
periodic attractor is unstable because any rational perturbation has all
orbits periodic. Moreover, if we perturb further by adding a suitable
small transverse field then we obtain a stable flow with a single periodic
attractor L, whose basin is dense in T™. Such an L is called a lock-on
because it locks all the phases of the original n oscillators together; the
collapse of the attractor T" — L is called an Q-implosion.

Before we go on to construct a strange attractor we make a remark about
definition 7.1 above.

Remark. There is no universally accepted definition of attractor yet because
the subject is still developing. Most definitions are either too strong because
they exclude important examples, or too weak because they include un-

* Positively-invariant means ¢'N < N, YVt > 0. The w-limit of x means () (closure | ), , ¢°x).
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wanted examples. For instance, that in [72, page 39] is slightly too strong
because it inadvertently excludes strange attractors; that in [64, page 786] is
only concerned with axiom 4 and excludes non-axiom A attractors; that in [1,
page 517] is slightly too weak because it lacks minimality, and includes, for
example, all closed invariant sets of the equation X = —x on R" The
definition above may need to be weakened when studying strange bifurca-
tions. Also some authors prefer a more measure-theoretic definition, like 7.8
below, because it is more closely related to the measurements made in
experiments. On the other hand, it is important to keep both the topological
and the measure-theoretic viewpoints in mind because the former provides
an overall grasp, while the latter relates to data.

We shall now construct a strange attractor by suspending a diffeomor-
phism. This is the simplest method of constructing one, and indeed the study
of diffeomorphisms was pioneered by Smale [64] in order to gain insight into
differential equations. The most elegant attractors are obtained from
Anosov difffomorphisms [4, 30, 64], but these are exceptional because they
are manifolds and do not display the Cantor set structure that is typical of
most strange attractors; so instead we shall describe some examples that are
more likely to be of use in modelling turbulence.

7.3. Definition of Suspension. Given a smooth embedding f: M - M we
suspend this to a flow Zf on a manifold £, M one dimension higher, as
follows. Let F: R x M — R x M be the map F(s, x) = (s — 1, fx) and define
Z;M to be the quotient manifold (R x M)/F. Let ¢ be the flow on R x M
given by ¢'(s, x) = (s + wt, x), where w > 0. We call o the frequency of the
suspension. Since ¢ commutes with F it induces a flow on XM, which
defines ;.

If f is a difffomorphism there is a simpler way of constructing £, M by
glueing the ends of I x M together with £, so that (1, x) = (0, fx) (see Figure
24).

glue

Figure 24

The fixed points and (discrete) periodic orbits of f suspend into the (con-
tinuous) periodic orbits of Zf. The attractors of f suspend into the attractors
of If. Here an attractor of an embedding is defined in the same way, word for
word, as an attractor of a flow (with the understanding in 7.1 that ¢ liesin Z
rather than R).
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7.4. Example of a Strange Attractor [61, 64]. Let M be the 3-dimensional
solid torus
M={wz)wzeC, |w| =1]z|] <1}

Define the embedding f: M — M by

Let

(see Figure 25). We shall show that A is a strange attractor of f. Therefore if
we suspend f'to give a flow Z; on the 4-dimensional manifold X, M, then A
will be a strange attractor of the flow.

Figure 25

Before proving A is an attractor, let us describe its geometry. The image
SM of fis a long thin torus that winds twice round inside M, and meets each
transverse disk w = constant in 2 small disks, each of radius 4. Similarly M
is a longer thinner torus that winds 4 times round, and meets each disk in 4
small disks, each of radius i, and so on. In the limit A meets each disk in a
Cantor set. Therefore locally A is the 1-dimensional product of an arc and a
Cantor set, and globally A is a bundle over the circle with fibre the Cantor
set (like a solenoid). Consequently the suspension TA is locally the 2-
dimensional product of a surface and a Cantor set.

75. Lemma. A is a stable attractor of f.

PROOF. By construction A is attracting, and so it suffices to prove it indecom-
posable. Following Parry we prove A indecomposable by showing f|A
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conjugate to a shift automorphism, as follows. Let 2Z denote the space of all
doubly-infinite sequences of 0’s and 1’s, with the compact-open topology.
Let o be the left-shift on 27 given by (oy)n = y(n + 1), y € 2% n e Z. Given

0, 0<fO<m

— (o0 _
x=(e%z)e A lethyx {1’ r<0<2m

Applying h, to the orbit [..., f~'x, x, fx, f2x, ...} of x determines a map
h: A — 2% which is not continuous, but which makes the following diagram
commutative:

!

A—— A

I

22__,21

Now hA consists of all sequences except those ending in an infinite string of
1’s. Therefore, as in decimals, let us identify a sequence ending 0111... with
the sequence having the same beginning but ending 1000.. ., and identify the
sequence of all 1’s with that of all 0’s. Let A* be the identification space, and
v: 22 » A* the identification map. It is straightforward to verify that
although h is not continuous the composition vh: A — A*is in fact a homeo-
morphism. Therefore f | A is conjugate to the left-shift on A*. The periodic
orbits in hA are dense in 2Z, and hence it is easy to construct a point in hA
with -limit 2% Therefore periodic orbits are dense in A* and A* is
indecomposable. Therefore the same is true for A, and so A is an attractor.
For the proof of stability the reader is referred to [39, 44, 65]. O

7.6. Definition of Axiom A Attractor. Following Smale [64] we say an
attractor A of a flow on X satisfies axiom A if periodic orbits are dense in A
and A has a hyperbolic structure; here a hyperbolic structure means that at
each point A there is

( 1 dimension of flow
¢ e dimensions of expansion
‘ n — 1 — e dimensions of contraction (n = dim X),

and that this decomposition is continuous (see [30, 64] for details). For
instance example 7.4 above satisfies axiom A: the periodic orbits are dense
by the lemma, and it is hyperbolic because there is 1 dimension of flow in the
suspension direction, 1 dimension of expansion in the w-direction, and 2
dimensions of contraction in the z-direction. Locally an axiom A attractor is
always like a manifold in the flow and expansion directions, but may be like
a submanifold, or a Cantor set, of a product of the two, in the contraction
direction.

In a familiar attractor there is no expansion and so e = 0, but in a strange
attractor these must always be an expanding direction, and so e > 1. This
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expanding quality is an extremely important property of strange attractors
because points that are close together are torn apart exponentially. There-
fore it implies sensitive dependence on initial condition [54], and gives an
unpredictable and chaotic appearance to the motion [28, 50, 55, 60]. At the
same time the advantage of axiom 4 is that it is a sufficient condition for the
attractor to be stable [39, 65]. Hence we have that paradoxical combination
of chaos and stability which is so noticeable in turbulence. Axiom A attrac-
tors also have nice measure theoretical properties, as follows. Recall
the Definition 6.4 of the Bowen-Ruelle measure.

7.7. Theorem (Bowen—Ruelle [9, 52]). If A is an axiom A attractor with basic
B then for any continuous probability measure m with support in B the Bowen—
Ruelle measure p exists, has support A, and is invariant, ergodic, and indepen-
dent of m.

Remark. If an attractor A is strange there must be some exceptional points
in its basin B whose w-limit is not the whole of A ; for instance each periodic
orbit inside A must be the w-limit of some exceptional points. If x is excep-
tional the time average of &, cannot equal the Bowen-Ruelle measure uon
A—that is why we required m to be continuous in Theorem 7.7. However, if
A satisfies axiom A these exceptional points only have Lebesgue measure
zero. Therefore the complementary set B, of generic points has Lebesgue
measure 1 in B, and Vx € By, u = the time average of .. In other words,
most initial conditions lead to p.

Now suppose g: B — R is a continuous function representing some exper-
imental measurement. Define the time average § of g to be

. 1,7
gx = lim ?f g(d'x) dt.

T— o 0

Then Theorem 7.7 implies that g is constant on B, and
gx=fgdu, Vx € B,.
A

The significance of this result is that in spite of sensitive dependence on
initial condition, the time-average measurements are not sensitive. Although
the flow may look chaotic the measurements are meaningful and repeatable.
Rand [47] suggests that since this property of attractors is the most impor-
tant one from the experimental point of view it ought to be embodied in the
definition, in order to distinguish those attractors that might be useful for
modelling. He therefore proposes that the following definition might be a
fruitful extension of axiom A.

7.8. Measure-Theoretic Definition of Attractor. Given a flow ¢ on X and an
open set B = X we say there is an attractor in B if the time average of any
function B is almost constant. Here almost constant means 3 a subset By, of
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Lebesgue measure 1 in B, such that, V continuous g: B — R, g is constant on
B, . It follows that the Bowen-Ruelle measure y exists, and, Vg, § = j g du.
The attractor A is defined to be the support of p.

7.9. The Henon Attractor [23]. Non-axiom A attractors are relatively
unexplored but are the subject of much current research. The best known
examples are the Lorenz attractor [20, 28, 45, 53, 75] and the Henon attrac-
tor, although neither of these has been proved to satisfy either of the above
definitions yet.

The Henon attractor is a closed invariant set A of the difffomorphism
f: R* > R? given by f(x, y) = (y + 1 — ax?, bx), where a=14, b=03.
Henon [23] proved that A is attracting, and used a computer to show it
looks like Figure 26. However A has not yet been proved indecomposable,

¥

0.5F
fP

Figure 26

although numerical results suggest that it is. The computer pictures look as
if A is locally the product of an arc and a Cantor set, but this is unlikely to be
true for the following reason. If P € A is a point on the x-axis, then it can be
seen from Figure 26 that the arc through P gets folded sharper and sharper
under the iterations of f, so that, if the images of P are dense in A, then any
open subset of A must contain an infinity of them and cannot therefore be a
product. This phenomenon also prevents A from being hyperbolic. There-
fore it does not satisfy axiom A and is difficult to handle with Smale theory;
however, it may be possible to show it is a measure-theoretic attractor in the
sense of 7.8 by using characteristic exponents and the more general Pesin
theory [41, 56]. For some values of the parameters (a, b) computer studies
suggest that A breaks up into a (possible infinite [37]) number of periodic
attractors. Even if this were to happen for a dense set of parameters never-
theless it may be possible to estimate a bound for the variation of the
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associated Bowen-Ruelle measure u, which is really what is needed from
the experimental point of view.

Meanwhile Lozi [29] has studied the piecewise-linear analogue of the
Henon attractor, given by replacing x* by |x| in the definition of £, and
Misiurewicz [34] has shown it indecomposable for an open set V of par-
ameters. Although the Lozi attractor is not smooth it does satisfy Definition
7.1, and probably the associated Bowen-Ruelle measure is continuous in V.

The map fin the Henon attractor is orientation reversing, but an orienta-
tion preserving analogue is obtained by changing the sign of b, and then the
suspension Xf gives a 2-dimensional strange attractor in a 3-dimensional
solid torus, which is much closer to the type of attractor we are looking for
to model turbulence.

7.10. The Horseshoe [62, 63, 64]. If we are to model the onset of turbulence
by a strange bifurcation, it is necessary to study strange saddles as well as
strange attractors. The most famous strange saddle is the Smale horseshoe,
which is defined as follows.

Let M be the union of a square Q and two semi-disks D, D'. Let f: M —» M
be a horseshoe-shaped embedding, as shown in Figure 27, such that on the

D oD M

e

/D Y

/o

Figure 27

semi-disks f is contracting, and on f~'Q ~ Q it is linear and hyperbolic,
expanding horizontally and contracting vertically. Then there is a unique
point attractor 4 € fD, and the rest of the nonwandering set is the strange
saddle H, defined as follows.

Let Qo = Q, let Q,,y = f7'Q, n fQ, inductively, and let H = (), Q,.
Then Q, comprises 4 small rectangles, Q, comprises 16 smaller rectangles,
and so on, until in the limit H is the product of two Cantor sets, and hence is
itselfa Cantor set (see Figure 28). H is invariant, indecomposable and densely
filled with periodic points, because f |H is conjugate to the left-shift on 27 (as
in Lemma 7.5). H is hyperbolic by construction, and so satisfies axiom A.
Therefore H is a strange saddle, and stable [63].

In particular H contains two fixed points S, §' which are both saddle
points. S is the top left corner of H and S’ is near the bottom right corner. Let
A = (Va>0 /™M, as shown in Figure 29. In fact A is the union of the sink A
and the outset of H. Locally A is the product of an arc and a Cantor set,
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except at A. Notice that A is attracting but it is not an attractor because it is
not indecomposable. In fact the points of A — H — A4 are wandering, and
wander off to A. The outsets of S, S’ are contained in A; the left outset of S is
the interval SA running straight into 4, while the right outset of S and both
outsets of S’ wind densely over A.

<79)>

Figure 29

7.11. The Sink-Horseshoe Bifurcation. This is an example of a strange bifur-
cation which might be useful in modelling, but which is not yet fully under-
stood mathematically and needs to be studied further. Introduce a
parameter in the above construction of the horseshoe, and use the parameter
to change f in the neighbourhood of AS so as to run the sink A into the
saddle point S. Locally this is the simplest form of catastrophe, namely a
saddlenode or fold catastrophe, but globally we must regard it as a sink
running into the strange saddle H, because H is indecomposable. It is analo-
gous to the Q-explosion of Example 6.2, because the nonwandering set
explodes* from A U H into A. Roughly speaking after the bifurcation all the

* More precisely, let ¢ be the parameter, ¢ = 0 the bifurcation point, Q, the nonwandering set of
for @=Je x Q,, Q = closure Q, Q. =Qn (c x M), and A, =, fiM. Then

Q=0=4 VH, ¢>0
Q,=H,
Qy=A,.

We know Q, < A, Ve, and Q, # A, for some positive values of ¢ near 0, but conjecture that
Q, = A, for some other positive values of ¢ near 0.
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points of A which used to wander off to 4 now re-enter again at S and go
round A again. After the bifurcation S has disappeared and so an exponen-
tially thin neighbourhood of the outset of S has been removed from A, but§’
is preserved, and A is probably still the closure of its outset. In fact A
resembles the Henon attractor 7.9 (with b < 0). For all parameter values A is
attracting but for some values after bifurcation it cannot be an attractor,
because it contains periodic sinks with very long periods and very small
basins [37], and is therefore not indecomposable. However we conjecture*
that the Bowen-Ruelle measure is continuous at the bifurcation point, as in
Lemma 6.6.

Suppose that we now suspend the whole picture to give a parametrised
flow X, on the 3-dimensional open solid torus £ M. Before bifurcation £A4 is
a periodic attractor in the torus representing periodic motion, and after bi-
furcation ZA is (or, more precisely, resembles) a 2-dimensional strange
attractor representing turbulence. At bifurcation the Q-explosion represents
the qualitative catastrophic onset of turbulence, and the u-continuity
represents the quantitative continuity of time-average measurements. We
pursue this model further in 8.4 below.

8. Turbulence

Ruelle and Takens [51] first proposed the use of strange attractors to model
turbulence in 1971. This intriguing idea has attracted a great deal of atten-
tion, but as yet the programme is still in its infancy: much of the mathema-
tics is still unresolved, and the application is mostly speculative. The future
mathematical programme will require:

(i) topological studies of strange bifurcations and their organising centres
(extending the ideas of Sections 5 and 6);
(ii) measure theoretic studies of strange bifurcations, generalising Fourier
analysis from periodic attractors to strange attractors;
(iii) quantitative analysis of the Navier-Stokes equations at the strange
organising centres (as in Section 4), leading to prediction and exper-
imental confirmation.

The central idea of the programme is to provide a conceptually simple
geometric link between the complexity of the Navier-Stokes equations on
the one hand and the complexity of the observed data on the other. In this
section we discuss some points in the programme. For further discussions
see [7, 8, 12, 13, 14, 26, 28, 35, 47, 50, 53, 54, 55, 57, 60, 66, 67, 70].

8.1. The Ruelle-Takens Model. We begin with the Landau-Lifschitz model
[26] for the onset of turbulence. Let X be the space of all possible fluid

* This conjecture is the reason for calling it a bifurcation rather than a catastrophe.
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velocity fields in a given region, and let E be the evolution equation on X
determined by the Navier-Stokes equations and parametrised by the Rey-
nold’s number R. For R < R, suppose that E has a point attractor T°,
representing steady fluid motion. At R, there is a Hopf bifurcation T > T,
to a periodic attractor T representing periodic fluid motion. If the Reynolds
number is increased to R, there is another Hopf bifurcation T' — T2, to a
quasi-periodic attractor on a torus T? (see 7.2). At R; here is further Hopf
bifurcation T? — T3, to a quasi-periodic attractor on a 3-dimensional torus
T3, and so on, giving the sequence of bifurcations

T°>T' > T*>T> >

as the Reynolds number increases, leading eventually to turbulence.

Ruelle and Takens criticised the Landau-Lifschitz model on the grounds
that since T is unstable for n > 2 it is unlikely to be observed. They showed
[38, 51] that for n > 3 there exist stable perturbations T" — A, where A is a
strange attractor in T" of lower dimension. Then the strange attractor will
exhibit the desired sensitive dependence on initial condition [54]. Although
this was a far reaching idea, the Ruelle-Takens model can itself be criticised
on three grounds, as follows.

(i) Applying their own criticism and construction to the case n = 2 gives a
lock-on T? — L, where L is a periodic attractor (see 7.2). This modifies
the Landau-Lifschitz sequence to T® —» T* - T? — L, so that we never
actually reach the situation T", n > 3, where the Ruelle-Takens con-
struction can be used to obtain a strange attractor.

(ii) The particular examples [42] of strange attractors that they used to
prove the mathematical existence theorem are not particularly plausible
from the hydrodynamic point of view (not that they claimed any such
plausibility).

(iii) At the onset of turbulence new fluid motions appear that were not
observed before turbulence, and so this suggests an Q-explosion rather
than an Q-implosion T" — A.

8.2. Experimental Data. The most interesting data obtained so far are that
of Gollub, Swinney and their collaborators [12, 13, 14, 67]. They measured
frequency spectra in Bénard and Taylor flows, and inferred that the follow-
ing are amongst typical routes to turbulence:

Bénard: T°—> T!' - T? - L — turbulence
Taylor: T°— T' - T? - turbulence.

The Bénard experiment [14] consists of heating a rectangular cell of water
from below, the parameter in this case being the Rayleigh number or tem-
perature difference. Firstly, there is a steady motion T°, consisting of rolls
parallel to the longer side, as shown in Figure 30. Secondly, when the tem-
perature is increased the rolls begin to oscillate to and fro with a frequency
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@y, say, which is represented by a bifurcation T° — T to a periodic attrac-
tor. Thirdly, the amplitude of the oscillations begins to modulate with fre-
quency w,, say, which is represented by a bifurcation T! - T2 to a
quasi-periodic attractor. Fourthly, there is a phase lock between oscillations
and modulation T? — L, both the original frequencies now being multiples
of the lock-on frequency w. Fifthly, the onset of turbulence is accompanied
by a broadening of the spectral lines to bands. A typical sequence of fre-
quency spectra is sketched in Figure 31. [See 12, 14.]

power
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Figure 31

turbulence

These spectra are obtained by monitoring some component v of the fluid
velocity at a suitable point, for instance the horizontal component at P in
Figure 30. The velocity is calculated from the Doppler effect on a laser beam
focused at P and reflected off tiny polystyrene balls moving with the fluid.
Then the spectrum is the Fourier transform of the autocorrelation function
of v (see 8.3 below).

In the Couette-Taylor experiment T° represents the steady motion of
Taylor flow described in Section 4, above. When the Reynolds number is
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increased the Taylor cells develop waves which rotate at (mysteriously) one
third the angular velocity of the inner cylinder, which is represented by a
bifurcation T° — T! to a periodic attractor. Next the amplitude of the waves
begins to modulate, which is represented by T' — T?. Finally the onset of
turbulence is accompanied by a broadening of the spectral lines. There is no
lock-on in this case because T? is stable with respect to the rotational
symmetry of the apparatus [18, 46]. We now have to explain why a strange
bifurcation causes a broadening of the spectral lines.

8.3. Fourier Analysis. Let ¢ be a flow on X and v: X — R a measurement. If
the initial condition is x € X then the autocorrelation functiona: R — R of v
is defined by
1 T
a(t) = lim —J. v(P*x)v(¢**'x) ds.

T— T 0
Assuming x is a generic initial condition in the basin of an attractor A with
Bowen-Ruelle measure y, then

a(t)

I

lim % '[ Tg'(d)‘x) ds, putting g'(x) = v(x)v(¢'x),

T—o0 0

f g' du, which is independent of x.
A

The frequency spectrum ¢ is the Fourier transform of o, and we now describe
some examples.

(i) If A = T, a periodic attractor of frequency w, then

o)
6= 0y0n0;
n=1

where §,,, is the Dirac measure at nw and o, the energy in the nth
harmonic. Therefore the spectrum consists of lines at the multiples of w,
with heights ¢,, as in the first and third graphs of Figure 31. If we
change the measurement v this merely alters the heights of the spectral
lines. If ¢ depends upon a parameter like the Reynolds number, and we
perturb the parameter, then this may move A in X and alter the fun-
damental frequency w; it may also alter the speed with which ¢ flows
round A differently in different parts of A, and hence change the har-
monics, in other words, alter the heights of the spectral lines, but it will
not change the type of o.

If A = T?, a quasi-periodic attractor with frequencies w, and w,, then

0= Z 6"1,n25n1w1+nzw2
ny, n2

as in the second graph of Figure 31. Changing the measurement may
alter the heights of the spectral lines, and perturbing the parameter may
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alter their heights and change the fundamental frequencies w, and w,,
but as long as A remains quasi-periodic it will not change the type of 6.
This is particularly noticeable in modulated wavy Taylor flow because
the symmetry makes T? stable [18, 46].

(iii) If the attractor is a suspension A of frequency w, and if the measure-
ment v depends only on the suspension coordinate, then ¢ will be the
same as in case (i), giving the appearance of a periodic attractor. If,
however, ZA is in fact a strange attractor, and if a perturbation of the
parameter causes the speed to alter differently in different parts of ZA
then this will uniformly broaden each spectral line into a band, as in
Figure 31, because the expanding property of the strange attractor
causes mixing and destroys the correlation after some time [40, 47]. For
example if the change of speed caused an e-change in the suspension
frequency that depended linearly on A then this would destroy the
correlation after time ~ (1/¢), and hence broaden each spectral line into
a band of width ~ ¢. The greater the change of speed the broader the
bands, until they eventually overlap and lose their identity.

8.4. Onset of Turbulence. We return to the main problem of finding bifurca-
tions that model the onset of turbulence. Suppose that turbulence is
preceded by periodic motion, represented by a periodic attractor T! of the
evolution equation E on X. Let M be a disk of codimension 1 in X , cutting
T! transversally at A, say. Let /2 M — M be the Poincaré return map deter-
mined by E. Then A is a point attractor of /, and its suspension £4 = T*.
Assume that 4 is stable, so that all its eigenvalues have negative real part.

In the Landau-Lifschitz model the next step T' — T2 is equivalent to
assuming a Hopf bifurcation of fat 4, which is preceded by the weakening of
the attractive power of a pair of complex eigenvalues just before they cross
the imaginary axis. An alternative assumption is the weakening of a single
real eigenvalue. This is particularly plausible in the case when T has arisen
from a lock-on T? — T*, because then the eigenvalue of T* in T? is already
weak compared with the rest.

When a real eigenvalue crosses the imaginary axis from negative to posi-
tive it produces a pitchfork bifurcation of £ as in Figure 1. (Here the equilib-
rium set for the parametrised embedding is equivalent to that for the
parametrised flow in 1.1.) Now the pitchfork is unstable, so we look for a
bifurcation arising from a stable perturbation of the pitchfork. In elementary
theory the only stable perturbation of the pitchfork that contains any bifur-
cations or catastrophes on its primary branch is that shown in the middle
picture of Figure 14; here the attractor 4 runs into a saddle causing a
catastrophic jump to another attractor. In non-elementary theory we must
allow for the possibility that the saddle might be strange, in which case we
should obtain an Q-explosion similar to the sink-horseshoe bifurcation 7.11.
Indeed this example is not implausible as we now explain.

Given a weak real eigenvalue, the Poincaré return map can be written as
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ig
eN=fM

Figure 32

a composition f = eg, where g is a strong contraction onto a tubular neigh-
bourhood N of the corresponding eigenvector, and e is an embedding of N
in M. Locally near 4 the embedding maps N along the eigenvector, but
globally e may bend N, as in Figure 32. Indeed the return map of a Hopf
bifurcation has a similar S-bend, except that in the Hopf case A4 lies in the
middle of the S-bend. Therefore Figure 32 could be regarded as a perturba-
tion of the Landau-Lifschitz model, and it would be interesting to find a
common organising centre.

It is possible to obtain Figure 32 by extending Figure 27, and in this case
the nonwandering set of f will be the attractor 4 and a horseshoe as in 7.10.
Then the required perturbation of the pitchfork will be none other than the
sink-horseshoe bifurcation 4 — A described in 7.11. The suspension
T4 — XA is an Q-explosion from the periodic attractor T! to the strange
attractor A modelling the onset of turbulence.

Now in an experiment the experimenter will naturally set up his appar-
atus so as to best detect T' and measure its frequency before bifurcation.
Therefore immediately after bifurcation the apparatus will automatically
pick up the suspension coordinate of £A, and measure its frequency. Hence,
assuming the Bowen-Ruelle measure continuous at bifurcation, the spectral
lines will exhibit no discontinuity at the Q-explosion. Beyond bifurcation the
speed of ZA will begin to depend on A as well as on the suspension coordi-
nate, and so the spectral lines will begin to broaden uniformly into bands.

In the case of Taylor flow the rotational symmetry of the apparatus will
induce a double suspension £24 — Z2A. Therefore the quasi-periodic torus
T? explodes into a 3-dimensional strange attractor, accompanied by a
broadening of the quasi-periodic spectral lines.

8.5. Summary. Strange bifurcations involving Q-explosions from periodic
attractors to strange attractors have properties that resemble the onset of
turbulence, as follows:

(i) catastrophic qualitative change;
(ii) continuous quantitative change;
(iii) expanding properties, implying sensitive dependence on initial condi-
tion, and chaotic appearance;
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(iv) indecomposable properties, implying that time-average measurements

are independent of initial condition;

(v) mixing properties, implying the uniform broadening of frequency spec-

tral lines into bands;

(vi) stability properties, implying the stability of turbulent flow, and the

It
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12.

13.
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15.

16.

17.

18.

repeatability of measurements.

should be emphasised, however, that much of the mathematics is incom-
ete as yet, and still developing.
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