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1. Abstract. We show that Darwin's theory of evolution implies punctuated
equlilibra and multiple speciation at the punctuation points. Both phenomena are
observed in the fossil record [see for example 11,12,18]. Here punctuated
equilibria is a term introduced by Gould and Eldredge [9,10], and means that
species tend to remain stable for a long time but if one species evolves into
another then it tends to do so relatively quickly. Indeed Darwin himself suggests
in the Origin of Species [1, Summary of Chapter X], "that the duration of each
formation is, perhaps, short compared with the average duration of specific
forms", and in the later editions he adds "although each species must have passed
through numerous transitional stages, it 1is probable that the periods, during
which each underwent modification, though many and long as measured by years, have
been short in comparison with the periods during which each remained in an
dnchanged condition”. Hence the fossil record consists of thick layers within
which species tend to remain constant, separated by surfaces of discontinuity
across which the species change abruptly. We call such a surface a punctuation
point. By multiple speciation at a punctuation point we mean that a single fossil
species immediately below that point has given rise to several descendant fossil
species immediately above that point, as {llustrated in Figure 1. At first sight
multiple speciation seems surprising, and it might be thought that a succession of
bifurcations as in Figure 2 would be a more "generic" model, For instance
successive bifurcations have proved useful in taxonomy. However, if we translate
Darwin's actual hypotheses into the simplest possible mathematics, then the latter
surprisingly hands us back Figure 1 as the generic situation rather than Figure 2.
And it is interesting to note that in the only diagram in the Origin of Species
Darwin chooses to use Figure 1 rather than Figure 2.
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In the mathematical model a species in equilibrium is represented by the
minimum of an unfitness function. Introducing parameters to represent a changing
environment leads to elementary catastrophe theory, with the catastrophes

representing the punctuation points. We use Darwin's original hypotheses to
analyse what happens during a catastrophe, and this predicts the multiple
speciation. Catastrophe theory has been applied to evolution by a number of

authors [including 2,3,4,5,6,7,14,15,17,19,20], but as far as I know this 1is the
first time it has been used to explain the multiple speciation at punctuation
points.
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2. Darwvin's hypotheses.
Darwin's theory of evolution can be summarised briefly as:

(1) Random small variations
==> (3) Evolution of species.
(2) Natural selection

Here (1) and (2) are the slow gradual cause, while (3) is the long term effect.
One of the main difficulties of the theory has always been to reconcile the
apparent contradiction between the assumed continuity of cause and the observed
discontinuities of effect. For instance in the fossil record there are
discontinuities in time, and in the 1living world there are discontinuities in
space, and discontinuities of form, to say nothing of the fundamental
discontinuity inherent in the very nature of speciation. Darwin was well aware of
these problems and devoted a whole chapter of the Origin of Species to
"difficulties of the theory". His greatest supporter, T.H. Huxley, was also
concerned with the problem and even wrote to Darwin the day before the book was
published warning him: "You have loaded yourself with an unnecessary difficulty in
adopting Natura non facit saltum so unreservedly".

As 1t turns out Darwin and Huxley need not have worried because it is now
recognised to be a common phenomenon in science that continuous causes can produce

discontinuous effects. The mathematical tool for modelling such phenomena is
catastrophe theory, which arises naturally from parametrising functions and
ordinary differential equations. The point of view that catastrophe theory

emphasises 1is that (1) and (2) are local hypotheses whereas (3) is a global
conclusion. It 1is necessary to insert some mathematics, or other types of
argument, in between the hypotheses and the conclusion if the latter is to have
any meat. Some critics of Darwin complain that his hypotheses are trivial and
tautological, and therefore of 1little scientific use for explanation or
prediction. But this mistake arises from looking only at the local point of view;
it is analogous to complaining that Newton's law of gravity is trivial because a
body twice as massive is obviously twice as heavy, and tautological because if the
earth attracts bodies since they fall downwards then it will cause them to fall
downwards. In Newtonian theory the critical passage from local to global occurs
when passing from the locality of the differential equation to the globality of
its solution, and only then does the power and beauty of the theory become
apparent in the surprising prediction of elliptical orbits.

Similarly the power and beauty of Darwinian theory only becomes apparent when
it is used to explain so many specific and detailed examples of evolution. Such
explanations, however, have been primarily verbal rather than mathematical, and I
think the reason is that biological measurements tend not to transcend the passage
from local to global. Some measurements are local - for instance measuring the
fitness of individuals by counting their offspring - and others are global - for
instance measuring the means of spindle diagrams of clads to explain the sigmoid
nature of the Cambrian explosion [11, Chapter 15]. But those that are both, for
instance the size of skull, tend to be descriptive rather than part of a more
sophisticated mathematical local-to-global explanation (whereas the measurements
in the laws of physics transcend all scales). Therefore if mathematics is going
to play any future role in evolutionary theory it is more likely to be qualitative
than quantitative [see 19, Chapters 10 and 20]. Furthermore, we may expect it to
be useful in precisely those counterintuitive areas where verbal arguments lack
conviction, such as when continuous causés. produce discontinuous effects.

Let us now begin to translate Darwin's hypotheses (1) and (2) into
mathematics. Firstly "small variations" suggests representing the individuals of
a species by points in a metric space X, the simplest model being n-dimensional



euclidean space (or an open subset thereof). What do the coodinates of X
represent? They might be particular significant measurements for the specific
example of evolution under consideration, such as length of leg, or the size of
beak, or the concentration of some enzyme in some organ, or the timing of some

embryological event that affects the eventual shape of the phenotype. We can
elther confine ourselves to a few explicit variables, or allow ourselves an
arbitrary number of implicit variables. Although variations in phenotype must

ultimately arise from variations in genotype which are of a combinatorial nature,
nevertheless in most cases a continuous model 1is adequate, and in many cases
better, for describing variations in phenotype. Also it is the phenotype rather
than the genotype that we want to model, because natural selection acts on the
phenotype.

If we want to model the evolution of a symbiotic relationship, or a
prey-predator relationship, or an ecology, then we can use the same model with a

point in X now representing the symbiotic pair, or the prey-predator pair, or the
entire ecology.

We translate the word "random" into mathematics by assuming that the offspring
of an individual x will lie in a neighbourhood of x. In Appendix 1 we make that
concept more explicit.

Darwin's hypothesis (2) of natural selection means that more offspring are
produced than can survive, and so only those more fitted to the given environment
will survive. The simplest way to translate "fitness" into mathematics 1is to
postulate an unfitness function f:X 5 R, where R denotes the real number, and
fx < fy means x is fitter than y. (We use unfitness rather than fitness in order
to exploit the intuition of a ball rolling downhill). Let us postpone discussing
the existence and measurability of f until we have begun using it, because then
the usage will indicate what needs to be discussed.
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For simplicity suppose at first that X is 1-dimensional, and consider the
graph of f as in Figure 3. (At the back of our minds we continue to think of X as
n-dimensional, and later it will be important to have X at least 2-dimensional).
Suppose that the individuals of a species have mean x, and are clustered in a
neighbourhood of x. By hypothesis (1) their offspring will be spread over a
slightly larger neighbourhood, and by hypothesis (2) only the fitter will survive,
and so the mean of the survivors will be slightly downhill from x. Hence the
species will evolve downhill towards the minimum y of f. When the species reaches
that minimum then it stabilises, because then any small variations will be less
fit and so will not survive. Notice that a minimum of f is already a global
concept and so we have already begun the passage from local to global.

It is tempting to think of evolution as a dynamical system analogous to the
ordinary differential equation % = -vf, but we shall see in §5 that if dimX > 2 it
obeys a rather different kind of dynamics.



3. Disconrihuicy in time.

We now introduce the notions of catastrophe theory [2,14,19]. Suppose the
environment is gradually changing so that another ecological niche appears at z,
as in Figure 4. More precisely we assume that the fitness function gradually

changes so as to create a new minimum at z, which represents the form of phenotype
best fitted to fill the new ecological niche. Even if this niche gradually
becomes more advantageous that Y, with a lower minimum as in Figure 5,
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the species is prevented from evolving to z because it cannot climb over the
intervening hump: any small random variation of individuals towards 2z is
immediately stamped out because they are less fit than the existing population at
y. This situation persists until the gradual change in f causes the minimum at y
to coalesce with a maximum, as in Figure 6. Now any small random variation toward
z will be advantageous, and so the species will evolve until it reaches

f
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z, where it will stabilise again. Compared with the periods of stability
previously spent at y, and subsequently spent at z, the time taken to go from y to
z is likely to be relatively short, perhaps as little as one thousandth as long as
the periods of stability. Hence on the geological time scale it will appear as a
catastrophic jump, or more briefly a catastrophe. In the fossil record the
catastrophe will occupy only a thin surface layer of perhaps one thousandth the
thickness of the layer below containing fossils of y, and the layer above
containing fossils of 2. Such a layer is likely to be so thin that it may not
contain any fossils of the intervening forms between y and z, and hence will
appear as a surface of discontinuity. Thus we have shown that Darwin's two local
hypotheses imply punctuated equilibria.

Before leaving the concept of fitness notice that it is really a local
ordering rather than a global function. Here local ordering means that if we try
and measure fitness then we can only really compare two individuals or two types
of individual who are relatively close, living at the same time in the same
environment at the same place, and order them by saying one is fitter than the
other. By contrast, in the above argument we have assumed fitness to be a global
function f. Furthermore we have assumed f to be constant during the catastrophe
from y to z, or more precisely that the catastrophe is much faster then the
gradual rate of change of f. Although the catastrophe is fast on the geological
time scale, it may involve as many as ‘10,000 generations over a time span of
250,000 years. This raises the problem: how can we compare the fitness of y and
z, when y is an individual of a totally different shape living 250,000 years
earlier than z? The answer is that we must use mathematics to bridge the gap, and
in Appendix 2 we state a theorem proving the existence of the global function,



given the local ordering. A consequence of this existence theorem is that the
quantitative value of f is not globally significant: for example we may just as
well replace f by ef, where e:R » R is any increasing function. Therefore it is
only valid to use the qualitative global properties of f (namely those also shared
by ef) of which the most striking are the catastrophes.

4. Discontinuity in space.

A gradually changing spacial environment can lead to abrupt frontiers between
different but related species occupying the same ecological niche. 1In the Origin
of Species Darwin draws attention to several living examples going up mountains,
or down oceans, or towards cooler latitudes. 1In the chapter on the difficulties
of the theory he argues how intermediate species might be eliminated, but does not
explain how a frontier might form in the first place. We shall show that the cusp
catastrophe offers a simple explanation as follows.

The two parameters are space and time, where space is 1-dimensional, and
refers to the direction in which the spacial environment is changing, and time
refers to the long-term evolutionary time scale. Suppose that initially a single
species x occupies the whole space. Suppose that conditions at one end of the
spacial axis favour the gradual evolution of x into a species y, while the other
end favours the gradual evolution of x into z. Both evolutions are assumed to be
gradual, involving no catastrophes. Assume that the corresponding parametrised
fitness function f is smooth, generic, and as simple as possible (i.e. has fewest
possible singularities). Then the graph G of minima of f over the parameter space
will be as shown in Figure 7 [see 19, Chapter 4]. We have drawn X as a
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1-dimensional vertical axis, but even if X were n-dimensional the graph G would
still be 2-dimensional as shown. The shaded area of G represents maxima of f if
dim X = 1, or saddles of f if dim X > 1. For parameter points outside the cusp f
will be unimodal, with a unique minimum (as in Figure 3). For parameter points
inside the cusp f will be bimodal, with two minima at y and z (as in Figure 4 and
5). Which of the two species is fitter will depend upon which minimum is lower.
The fitter species will then dominate at that particular space and time, and take
over the ecological niche by eliminating the other species.

Define the Maxwell line to be the set of parameter points where the two minima
are at the same level. Then the Maxwell line will represent the observed frontier

between the two species y and z. Thus we have explained the formation of
frontiers.
We can make two further predictions concerning the Maxwell line. Firstly

Figure 8 shows that the graph of the species over the Maxwell line is a typical -
pitchfork bifurcation. Therefore the two species diverge most markedly



immediately after to, the time coordinate of the cusp point, which is the moment
when the frontier first appears. Secondly, Figure 9 illustrates the fact that
generically there is no reason why the Maxwell line should be parallel to the time
axis. Nor is there any reason why it should stabilise parallel to the time axis
after some time (unlike the stabilisation of a frontier between two tissues in
embryology [19, Chapter 4], which is a bifurcation phenomenon rather than a
Maxwell phenomenon). Therefore there are likely to be relatively long periods
where one of the species is gradually invading the territory of the other. At any
given time t the Maxwell line represents the frontier between the territories of y
and z as indicated by the vertical line in Figure 9; and at any given place s the
Maxwell line represents a discontinuity in the fossil record between y and z as
indicated by the horizontal line in Figure 9.
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Dodson [4] describes further applications of catastrophe theory to phenomena
involving two spacial dimensions, for example using a cusp to explain how the two
overlapping ends of a continuous circular cline may not be able to interbreed.

Before leaving spacial discontinuities let us contrast the difference between
the catastrophe model here and the conventional explanation of allopatric
speciation [6,11]. Allopatric speciation requires the additional and perhaps
somewhat artificial hypothesis of a peripheral subset of the species becoming
spacially separated from the main body, evolving in isolation, and then reinvading
the main territory of the main body. By contrast the catastrophe model only
assumes the gradual evolution of the main body within its own main territory. In
the allopatic speciation model the separation and spacial discontinuity is a
hypothesis, whereas in the catastrophe model it is a conclusion, deduced from
continuous hypotheses.

5. Discontinuity of form.

The most fundamental discontinuity in evolution is speciation, in other words
the discontinuity of form. At first sight the lack of intermediate forms between
two species, for example between man and chimpanzee, can easily be explained by
saying there is a continuity of form in space-time if we backtrack both species to

their common ancestor. However, this only localises the problem as to why the
common ancestor should have bifurcated in the first place (without introducing
some spacial parameter as in the last section). Indeed if the common ancestor
were sitting at some minimum of f, then Darwin's hypothesis (2) of natural
selection would keep it there, and actively prevent bifurcation. Therefore
speciation cannot occur at a minimum of Ff. Moreover the main classification

theorem of elementary catastrophe theory [14,19] implies that since time is
l1-dimensional it is in general impossible for a minimum to bifurcate without a
catastrophe. Therefore speciation must occur during the catastrophes.

Figure 6 gives no insight into how speciation could occur during a catastrophe
because X is only 1-dimensional. To gain the correct insight we must have X at
least 2-dimensional, and so we shall imagine X to be a horizontal plane, and f to
be the height function of a landscape. Any catastrophe must be triggered by the
disappearance of a minimum, or more precisely a gradual change of f causing the
coalescgnce of that minimum with a saddle. This can be visualised as a pond on a



hillside, whose edge is gradually eroding away until it disappears. The generic
pictures of the contours of f before, at, and after the moment of catastrophe are
shown in Figure 10. Before the catastrophe the species is in stable equilibrium
at the minimum x, and y is the saddle point. At the moment of catastrophe x
coalesces with y at the point z. The contour through 2z is a cusp whose interior
axis points downhill, and therefore the species begins to evolve specifically in
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this direction. When the species starts going further downhill the direction of
evolution is not so clear, and to determine what happens it is necessary to go
back to Darwin's original hypotheses (1) and (2). According to hypothesis (1),
the random small variations will cause the species to spread like a wave in all
directions, along the contours as well as downhill. Meanwhile the natural
selection of hypothesis (2) will prevent it from going uphill, and by eliminating
the less fit will cut off the back of the wave along a contour line. Therefore
the species will travel like a solitary wave going downhill at the same time as
elongating itself along the contours. .

Let us first consider the artificial special case of parallel contours, and
equal speeds of variation in all directions. At any given time the species will
occupy the sector of a circle as illustrated by the shaded area in Figure 11. As
time progresses the radius will increase and the sector will approximate to a
strip between two neighbouring contours.
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Darwin makes some pertinent comments in his initial chapter on the breeding of
domestic species in the Origin of Species. A wild breed is stable but "when the
organisation has once begun to vary, it generally continues to vary for many
generations". Once variation has started "the whole organisation seems to have
become plastic".

In general there will be severe problems in measuring the rates of variation
and natural selection in terms of measurements of the phenotype. But in any case
we would not expect the contours of f necessarily to be parallel, nor the speed of
variation necessarily to be the same in all directions. So let us consider what
will happen if the contours develop some curvature as shown in Figure 12.
Although the value of f will not be significant, as explained in §3, nevertheless
the slope |vf| of f may have some significance because it is a local property
related to the advantage of Increasing fitness. In Appendix 1 we give arguments
to suggest that the speed of evolution, in other words the speed of the wave-front
downhill, at least for double-sex species, is locally proportional to the slope of
f. This implies that where the contours are closer together the speed will be



faster and the wave-front will surge ahead, while the wave-back will lag behind as
shown in Figure 12 because it is a contour line. Therefore the species which
initially occupied the continuous strip on the left will divide into separate
components on the right; individuals in between the components will have been
eliminated by natural selection. Moreover the concave curvature of the contours
has the effect of "focusing" each component into a relatively small droplet, in
other words a well-defined subvariety of the species.
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Figure 12
— 5 downhill

i

We have drawn X as 2-dimensional and hence the contours as 1-dimensional, but
in fact X will really be n-dimensional, and contours (n-1)-dimensional. Therefore
the continuous (n-1)-dimensional disc indicated by the shaded strip on the left of
Figure 12 is liable to break up into several droplets. Hence the species will
break up into several different subvarieties. Initially all these sub-varieties
will still belong to the same species, but as they evolve further they will lose
the capacity to interbreed and will therefore become separate species. Each will
then stabilise as it reaches its own particular minimum of f. Thus multiple
speciation will occur during the catastrophe. We have explained the multiple
speciation at the punctuation points (as in Figure 1).

Before leaving the model notice two further consequences of the focusing
effect of the curvature of the contours. Firstly it reinforces the initial
direction of evolution shown in the middle diagram of Figure 10; therefore
initially all individuals will begin to evolve in the way. Secondly it explains
the phenomenon of canalisation [16], namely the convergence of phenotype in spite
of divergence of genotype. Recent measurements have shown a surprising amount of
genetic variability within the same phenotype [8,13].

Appendix 1. The catastrophe wave.

We shall very crudely estimate the size and speed of the wave during the
catastrophe, given the mutation rate and fitness advantage. For simplicity assume
that the contours of f are parallel and that the wave is constant along contours
(neglecting the end effects). Therefore we are only interested in the
distribution of populations along the direction x of greatest slope, perpendicular
to the contours.

Let P = distribution of parents
Q = distribution of offspring
S = distribution of survivors.

Figure 13




Choose the origin at the mean of P, and for simplicity assume P symmetrical in x.
We translate Darwin's original hypotheses (1) and (2) into mathematical hypotheses
determining the transformations P 5 Q 2 S, as follows.

Hypothesis (1): P 3 Q. Case (a) Single sex.

Define Q(x) = SP(y)Ny(x-y)dy, where Ny = 7%?3_6

Here u 1s a parameter measuring the rate of mutation: offspring are distributed
normally about their parent y with variance u.

Case (b) Double sex.
Define Q(x) = ffp(y)p{z>£‘uu(x—((1-t)y + tz)) dt dy dz.

Here offspring are distributed normally about every point on the interval between
their parents y and z. 1In each case it follows that Q is a symmetric probability
distribution with zero mean, like P.

Hypothesis (2): Q + S. Define S(x) = (1+ax)Q(x).
Here « 1is a parameter measuring the advantage of increasing fitness as x
increases. S is a probability distribution because Q has zero mean.

Eypothesis (3). a/p << 1.

This hypothesis means that, since vu is the standard deviation of an offspring
from its parent, even if the offspring mutates in the most advantageous direction
it can only expect to be marginally fitter than its parent. 1In other words there.
is only a small increase in fitness in each generation, which is a translation
into mathematics of the word "small" in Darwin's original hypothesis (1).

Hypothesis (4). S(x) =P(x-s).

This hypothesis says that S is a translation of P by distance s, implying that
successive generations form a stable travelling wave. We Iinterpret s as a
measurement of the speed of the wave.

Let p denote the variance of P, which we can interpret as a measurement of _
wavelength. (More precisely the "length" of the wave might better be described as
2v/p, as shown in Figure 13, but for convenience we shall use p). We can now
- calculate the wavelength p and speed s in terms of the mutation u and advantage «.

Theorem. Case p s
(a) B/ Yu
(b) 3u 3o

Proof. Let g denote the variance of Q. From hypothesis (1) we can calculate q in
the two cases.

2
(a) gq=p+u (b) gq = 3Pt u

From hypothesis (2), S = mean S = «q

variance S = q - s?
By hypothesis (4), variance S = p,
In case (a), Pp=q-s?=p+u-s? L8 = /i
- S, Y8
_tx o

. v
p=— -u = % (lgnoring u, since u << —5 by hypothesis (3))
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In case (b), . p=q-s8° = 3Pt M- =
p = 3(u-s?) < 3u &, = %p + p < 3u, L8 = «xq < 3au.

s? < 9a?u? << u, by hypothesis (3).
P = q = 3u, ignoring s? compared with u.
S = xq = 3au .

Figure 14 — 3L
>/l 2/3u
_____gr_,.gz:ifi T/ _,:::::au“ﬁp__ % %
single sex double sex
Summarising.

The single sex wave is shallow and fast, while the double sex wave is high and
slow. Therefore the double sex species is more well-defined during catastrophe.
The single sex wave travels with the maximum speed that mutation will allow,
independent of the advantage, and the advantage only affects the wave length; the
more advantageous the shorter the wavelength. The double sex wave has wavelength
independent of the advantage, and of the same order as mutation, while the speed
is proportional to the advantage. The latter result was useful for the argument
about speciation in §5.

Appendix 2: Globalisation of fitness.

Let X be a simply-connected n-manifold. Let F be an oriented foliation on X
of codimension 1. Assume that X can be covered by a finite number of basic
neighbourhoods for the foliation. Assume that there is no closed curve in X
transverse to the foliation. :

Theorem. There exists a function f:X 3 R whose level curves contain the leaves of
F, and which induces the orientation of F and maps paths transverse to the
foliation homeomorphically.

In the application X might be an open neighbourhood in the space of phenotypes
of the path of some catastrophe. A basic neighbourhood of the foliation
represents a set of individuals living at roughly the same time in the same
environment at the same place, and sufficiently close for their fitness to be
compared. Individuals of equal fitness determine a local leaf of the foliation of
this neighbourhood, and any local measurement of fitness determines an ordering of
local leaves, x < y if x is fitter than y, and hence the orientation of F. The
finiteness assumption of basic neighbourhoods comes from the finiteness of space
and time on earth. The assumption about closed curves comes from the
unreasonableness of evolving in a circle getting fitter and fitter. The
simply-connectedness assumption comes from the unreasonableness of evolving into
exactly the same species by two different routes. Simply-connectedness is a
necessary hypothesis for the theorem, because the following counter-example on an
annulus satisfies all the other hypotheses but not the theorem.

Figure 15




11 i

The conclusion about transverse paths guarantees that f behaves nicely
locally, separating the local leaves in each basic neighbourhood, and that f
strictly decreases along all evolutionary paths.

The theorem is proved by showing the space of leaves to be an oriented
simply-connected, in general non-Hausdorff, 1-manifold. Identifying non-Hausdorff
points makes it into a finite oriented tree, which, by induction on edges, can be
mapped into R, embedding each edge and preserving the orientation.

The theorem can be generalised to foliations with singularities. Here a
singularity means a basic neighbourhood for the foliation foliated by the level
curves of a generic germ, where generic means a Morse function or an elementary
catastrophe [14,19]. In the application we can therefore include the beginning
and end points of a catastrophe.

Since continuous functions can be approximated by smooth functions, and
generic functions are open dense in the latter, we may assume that fitness
functions are smooth and generic.
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