Controversy in Science: on the ldeas of Daniel Bernoulli
and René Thom

E. C. Zeeman®
Gresham Professor of Geometry, Hertford College
Oxford, OXI 3BW England

“Text of the 1992-1993 Johann Bernoulli Lecture given by Prof Sir E.C. Zeeman FRS at
the University of Groningen on February 16, 1993. The Johann Bernoulli Foundation for
Mathematics founded in Groningen in 1988 organizes each year a Johann Bernoulli lecture
for which it invites prominent scientists, in particular mathematics. Johann Bernoulli was
professor of mathematics at the University of Groningen from 1695-1705.

Vierde serie Deel 11 No. 3 november 1993, pp. 257 - 282 Nieuw Archief voor Wiskunde



Controversy in Science: on the ldeas of Daniel Bernoulli
and René Thom

E. C. Zeeman*
Gresham Professor of Geometry, Hertford College

Oxford, OXI 3BW England

I am honoured to be invited to give the 1993 Johann Bernoulli Lecture in
Groningen, and would like to thank Professor Takens for his kind words. When
he suggested to me that I talk about the catastrophe theory controversy I
thought it might be an opportunity to set it in a wider context, and to com-
pare it with a famous controversy in the eighteenth century in which Johann
Bernoulli’s son Daniel was involved.

THE FOUR TYPES OF APPLIED MATHEMATICS

Applied mathematics can be divided into four types according as to whether
the things that are being modelled are discrete or continuous, and whether their
behaviour is discrete or continuous. Figure 1 illustrates the four possible boxes:
at the top of each box are shown examples of each type of application, and at
the bottom of the boxes are shown the corresponding branches of mathematics
that are typically used to model them.

The top left box is called the Discrete Box because it is concerned with dis-
crete things behaving discretely. For example the throwing of dice is modelled
with finite probability. Another example is symmetry: if an object has a finite
number of symmetries then they form a finite group.

The bottom left box is concerned with discrete things behaving continuously,
like planets going round the sun, to explain which Newton invented ordinary
differential equations. In biology the varying sizes of populations can also be
modelled with ordinary differential equations. The main reason why discrete
things behave continuously is that time is continuous, and that is why 1 have
called it the Time Box.

Meanwhile the bottom right Continuous Box concerns continuous things be-
having continuously, like waves or elasticity, which are typically modelled by
partial differential equations.
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the University of Groningen on February 16, 1993. The Johann Bernoulli Foundation for
Mathematics founded in Groningen in 1988 organizes each year a Johann Bernoulli lecture
for which it invites prominent scientists, in particular mathematics. Johann Bernoulli was
professor of mathematics at the University of Groningen from 1695-1705.
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F1GURE 1. The four types of applied mathematics.

Finally we come to the top right box of continuous things behaving discretely:
this is an unexpected box because continuous things normally behave continu-
ously, and when they do not it tends to be anti-intuitive. Consequently there
are frequently arguments about things in this box, especially if new math-
ematics has to be invented to explain phenomena that previously had been
inexplicable. Such explanations may not be accepted at first, and may become
controversial. This is why I have called it Pandora’s Box: as soon as you open
it and let something out it is liable to set off a controversy.

The first example is music, for musical instruments tend to be continuous
things vibrating in harmonics. It is really an eigenvalue problem, and the
discreteness of the harmonics underlies the whole harmonic structure of music.
For example the string of a harpsichord or a violin is a continuous thing, but
it vibrates in a combination of harmonics, and the mathematical modelling of
vibrating strings led to a major controversy between d’Alembert, Euler and
Daniel Bernoulli; it began around 1750 and lasted some 80 years before it was
finally resolved by the work of Fourier and Dirichlet, as I shall explain below.

The second example is quantum theory, which was invented at the beginning
of this century to explain the wave/particle nature of light, but which was
staunchly opposed by Einstein all his life. The foundations of quantum theory
are still controversial even today.

The third example is catastrophe theory, which is a method of modelling in-
vented by René Thom in the 1960’s, based on theorems in differential topology.
It is particularly applicable to phenomena in which continuous causes give rise
to discontinuous effects, so it sits firmly inside Pandora’s Box and when it was
first let out it gave rise to a controversy in the 1970's, which I shall describe
below.
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THE VIBRATING STRINGS CONTROVERSY

The mathematical study of musical sounds has a long history dating back to the
Pythagoreans in the fifth century BC, but significant mathematical discoveries
were not made until the eighteenth century. Thanks largely to the experimental
work of Sauveur it was already known by 1700 that a stretched string can
vibrate in many different modes corresponding to the harmonics. Today we
can describe the harmonics as follows (although Sauveur did not know this).
Suppose we choose the unit of length so that the string has length,ﬁ. Then

the first harmonic is the fundamental

i
w = sinxcosct,
xI
w 0 T
the second harmonic is the octave above
u = sin 2z cos 2ct,

S~

the third harmonic is the fifth above that L\
P

~—

u = sin 3rx cos 3ct,

and so on. Here 2.0 < & < 7, denotes the distance along the string, u denotes
the displacement (assumed small) of the point x at time t, and c denotes a
constant, which is the speed at which waves can travel along the string, and
which is equal to the square root of the tension in the string divided by the
mass per unit length.

In 1713 BROOK TAYLOR [17] (after whom the Taylor series is named) found
the shape and frequency of the fundamental. In 1727 JOHANN BERNOULLI [5]
wrote to his son Daniel in St Petersburg showing how to obtain this shape as
the limit, as n — oo, of n beads vibrating on a weightless elastic string. In 1733
DANIEL BERNOULLI [2, 3] began looking at the mathematics of the harmonics
and their superposition.

It is important to remember that this was a period of enormously fruitful
musical development. In 1722 Bach had completed the first half of his 48
preludes and fugues under the title of The well-tempered clavier. By this he
meant that if a keyboard instrument is tuned so that the octave is divided into
12 equal semitones then, although this will have the disadvantage that every
single key is slightly out of tune, nevertheless the ear can learn to live with
this small amount of mistuning, and what is gained is the great advantage of
being able to play in any key. This gave composers the opportunity of making
all possible key changes and harmonic modulations, leading to the richness of
western music as we know it today. Bach completed his 48 preludes and fugues
by 1744. So harmonics were very much in the air, and Daniel Bernoulli was
right at the cutting edge of modern research at the newly founded Academy
in St Petersburg, a city which itself had only been founded in 1703. The stage
was now set for the three major papers by d’Alembert, Euler and Bernoulli
that triggered off the controversy. The history is summarised in Figure 2.
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THE PRECURSORS

1700  SAUVEUR: harmonics (experiment)
1653-1716

1713  TAYLOR [17]: shape and frequency of the
1685-1731 fundamental

1722  BACH: the well-tempered clavier
1665-1750

1727  JOHANN BERNOULLI
[5, and letter to Daniel]: beads on a string
1667-1748

1733 DANIEL BERNOULLI [2, 3]:  harmonics (mathematics)
1700-1782

THE CONTROVERSY

1747 D’ALEMBERT [1]: the wave equation&its solution
1717-1783 in terms of two travelling waves

1748 EULER [8]: non-smooth solutions
1707-1783

1753  DANIEL BERNOULLI [4]: Fourier series solutions

1700-1782

THE RESOLUTION

1807 FOURIER [9]: calculated the Fourier coefficients
1768-1830

1829  DIRICHLET [7]: proved the Fourier series convergent
1805-1869

FIGURE 2. The vibrating strings controversy.

In 1747 0" ALEMBERT [1] discovered that the string satisfied the wave equation
Ug = (‘2'-!4'.4—_.—.

Then he solved it most elegantly as the average of two travelling waves, one
going forwards and the other going backwards, both starting at the initial
position of the string. More precisely, given initial conditions u = f(z) and
1y = (0 then the complete solution is
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u(x,t) = %[f(.? +ct) + f(x — ct)],

where f is the odd 27-periodic extension to the real line R of the given ini-
tial condition in [o,7]. This was the first ever really successful use of partial
differential equations, and so in terms of Figure 1 d’Alembert had achieved a
spectacular opening of the Continuous Box.

Meanwhile Euler was a more practical man and he knew that in the harp-
sichord, which was the main keyboard instrument of the day, the strings were
plucked with a quill. So he suggested in a paper (8] in 1748, published a few
months after d’Alembert’s, that the initial position of a plucked string was un-
likely to be smooth: it was more likely to be as shown in Figure 3(a), consisting
of two straight segments OA and Am, with a kink at A.

He then applied, not d’Alembert’s equation, but d’Alembert’s solution: he
deduced from the two travelling waves that the position at time t would be as
in Figure 3(b), consisting of three straight segments with kinks at B and C.
The outer segments OB and C't are stationary, while the interior of the middle
segment BC' is moving downwards with constant speed, as shown in Figure
3(c). One complete cycle is given by the two kinks B and C' running steadily
down the upper edges of the parallelogram OAxwD in Figure 3(d), bouncing
successively off the ends O and 7, then running down the lower edges of the
parallelogram until they meet at D, bouncing off each other at D, and finally
reversing the whole motion back to A again.

One can just imagine d’Alembert’s indignation at Euler stealing his solution
of the wave equation without the slightest justification, because the function
could not possibly satisfy the equation itself since it was not differentiable at
A. Nor could the non-smoothness of f be localised at A because the kinks B
and C travelled the entire length of the string and back again. Not only had
Euler moved the problem from the beautiful Continuous Box into the awkward
Pandora’s Box, but he had also undercut and devalued d’Alembert’s pioneering
achievement of applying calculus rigorously to partial differential equations.

Of course today we can happily compute u, as the discontinuous function
in Figure 3(e), and u,, as the Dirac function in Figure 3(f), zero everywhere
except below B and ' where it is minus infinity. Moreover this Dirac function
is precisely the impulse that is needed in uy to give the points B and C an
infinite acceleration in zero time, in order to suddenly change them from being
stationary on OB and C'r to moving at constant speed on BC'. Thanks to
Schwarz’s modern theory of distributions, these Dirac functions are rigorous
solutions of the wave equation. Alternatively it is possible to smooth out
the kinks with an arbitrarily close C'™ approximation, which incidentally is
probably a more realistic model of the string.

But in d’Alembert’s day the very notion of function was in the process of
evolution [see 10, 12]; d’Alembert thought of a function as given by an analytic
formula, while Euler was moving towards a more general concept. It was not
possible to base the notion of function on set theory as we do today because
the set of real numbers had not been properly defined - indeed it was not until
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a century later in 1854 that Dedekind invented the first rigorous definition of
the reals.

Today we are in a position to appreciate both d’Alembert’s intellectual hon-
esty as a pure mathematician, and Euler’s imaginative flexibility as an applied
mathematician. But at the time the controversy between them was long last-
ing and hurtful, as is shown by the following extract in a letter from Euler to
Lagrange ten years later in 1759 [12, p512]:

‘I am delighted to learn that you approve my solution . . . which
d’Alembert has tried to undermine by various cavils, and that for
the sole reason that he did not get it himself. He has threatened to
publish a weighty refutation; whether he really will I do not know.
He thinks he can deceive the semi-learned by his eloquence. I doubt

whether he is serious, unless perhaps he is thoroughly blinded by
self- love.’

Meanwhile DANIEL BERNOULLI was justifiably upset because both D’ ALEMBERT
and EULER had ignored his earlier work on the harmonics. In 1753 he replied
[4] claiming that the general solution was merely an infinite sum of harmonics:

=
u(r,t) = E a,, sin nr cos net,

n=1

where the coefficients a,, are determined by the initial condition:

a0
u(r,0) = f(x) = Z”" sinnar.
n=1
Today we call it a Fourier series, but at that time Fourier had not yet been
born.

Consider the ages of the three men involved; Bernoulli was the senior math-
ematician at 50, Euler was well established at 40, and d’Alembert was the
young upstart at 30. What must have particularly annoyed Bernoulli was that
d’Alembert had successfully hijacked the problem from Pandora’s Box into the
Continuous Box, therefore missing the whole point. The most amazing thing
about music is the harmonic relationship between the notes, which d’Alembert
had totally ignored. Of course Euler with his kinks had moved the problem
back into Pandora’s Box to d’Alembert’s disgust, but somehow this was even
worse in Bernoulli’s eyes because Euler had moved it there for the wrong reason:
he too had missed the main point. One can sympathise with Bernoulli’s frus-
tration because his own approach was the deepest, giving the greatest insight
into the structure of music.

Both d’'Alembert and Euler, meanwhile, were very pleased with themselves
because they claimed they had discovered a whole wealth of new shapes and
new types of vibration for the string - in fact all possible types of vibration.
Bernoulli responded that, on the contrary, there was nothing new because,
he claimed, his sums of harmonics already included all their new shapes and
vibrations. He could not prove this claim, but here is a translation of an extract
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from the introduction to his 1753 paper [4] in which he emphasises the strength
of his convictions by using the French word ‘absolument’:

‘We remark therefore that the string can make not only [Taylor]
vibrations of the first, second and third kinds, and so on to infinity,
but also any sum of these vibrations in all possible combinations.
Meanwhile all these new curves and new types of vibration given
by Messrs. d’Alembert and Euler are absolutely nothing more than
sums of several kinds of Taylor vibrations.’

D’Alembert and Euler replied separately (they could not reply together since
they were not on speaking terms because of their own controversy) that one
could not possibly represent an arbitrary continuous function by a mere sum of
harmonics, because the latter sums were too simple compared with the wealth
of possibilities amongst all functions. Bernoulli protested that he had an infinite
number of coefficients to play with, but since he did not know how to calculate
them people did not believe him.

There followed a heated debate that lasted for over 50 years, with many
other people taking sides, until eventually in 1807 FOURIER [9] showed how to
calculate the coefficients. At last Bernoulli’s point of view was vindicated and
people realised that he must have been right after all. In 1829 DIRICHLET [7]
finally clinched the matter by proving that the resulting Fourier series converged
to the original function.

Fourier was in fact looking at a different problem, which happened to be in
the Continuous Box. He was investigating the way heat diffuses away from a bar
whose ends are kept at zero temperature. What he was really thinking about
was himself; Napoleon had posted him to Egypt for the Egyptian campaign,
where it was much too hot, and when that collapsed had posted him to the
French alps, where it was much too cold. The ends of the bar were in fact
his frozen hands and feet, and as he drank hot drinks to try and keep warm
he gloomily watched the heat diffusing away to his frozen extremities. He
discovered the heat equation

Uy =ty

where u(z,t) is the temperature at the point x at time {. Suppose that the bar
has length 7, and that the given initial condition is u = f(z). Then he found
the solution

oc %
L
u(z,t) = E aye™¢ " tsinnz.
n=1
Initially
o
f(z) = E ay, sin nr,
n=1

and he showed that the Fourier coeflicients must be given by
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2 (7 ;
ap = — / f(z)sinnzdz.
T Jo

However he could not prove that the resulting Fourier series converged to f, so
he suggested the problem to Dirichlet who had come to study with him as a
voung student of 17. In 1829 DIRICHLET [7] solved the problem for all functions
having a finite number of maxima and minima, and at most a finite number
of discontinuities. Dirichlet’s paper is a jewel. It is rigorous and beautifully
written, and could be said to be the first paper in modern analysis. In one
fell swoop he had disposed of much misleading intuition and fallacious folklore
amongst the mathematical community. For instance here is a list of some of the
plausible but mistaken beliefs held by d’Alembert and Euler and their followers,
which Dirichlet’s result proved to be false.

(i) An arbitrary continuous function in [0, 7] cannot be expressed as a Fourier
series. (False)

(ii) Anyway there is no way to calculate the coefficients. (False)

(iii) If f is not periodic it is impossible to express it as a sum of periodic
functions in [0, 7]. (False)

(iv) The limit of a convergent series of analytic functions must be analytic.
(False )

(v) By the uniqueness of analytic continuation, if 3 f, converges to f in
an interval, and if both f and all the f, are analytic in a larger interval,
then Y f, must also converge to f in the larger interval. (False )

(vi) The limit of a convergent series of continuous functions must be con-
tinuous (‘Theorem’ of Cauchy 1823: False - it needs to be uniformly
convergent).

Let us now summarise:

CONCLUSIONS ABOUT THE VIBRATING STRINGS CONTROVERSY

1. Each of d’Alembert, Euler and Daniel Bernoulli made major positive
contributions to the understanding of vibrating strings.

2. Most of their criticisms of each other’s work turned out to be wrong in
retrospect.

3. Bernoulli's contribution was the deepest, because it gave the most insight
into music and harmony, and his conjectures eventually proved to be
correct.

4. The controversy lasted for 80 years because the mathematics was not
proved until Dirichlet's paper.
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5. The controversy was mathematically very fruitful, because it stimulated
research that gave a deeper understanding of functions, differential equa-
tions, Fourier series, uniform convergence and harmonic analysis.

THE CATASTROPHE THEORY CONTROVERSY

We now turn to the more recent controversy about catastrophe theory. I pro-
pose to use the same historical technique as before, highlighting the main play-
ers and indicating the publications that were the more important from the point
of view of the controversy itself, as shown in Figure 4. I will then illustrate the
nature of the controversy by giving an example. Since I myself was involved I
should warn the reader that I am biased in favour of catastrophe theory.

The two most eminent mathematicians involved were René Thom and Stephen
Smale, both Fields medalists. Thom was the creator of the theory and Smale
the main critic.

The first thing to observe is that catastrophe theory is not a theory in the
usual scientific sense of the word, because it does not postulate any scientific
hypotheses. It could be called a mathematical theory in the sense that it does
embrace a collection of definitions, theorems, proofs and conjectures, but this
would miss the point because the main emphasis is on applications. Catas-
trophe theory is better described as a method of modelling. To put it boldly,
Thom wanted to understand the emergence of form in nature. His philosophy
was the opposite of that of ergodic theory, in which whatever spacial structures
you start with you finish up with a homogeneous soup. Thom started with the
soup and wanted to explain the emergence of structure. This is exactly the
subject matter of Pandora’s Box, and so a controversy was not so unexpected.

The mathematical precursor to catastrophe theory was Whitney's theorem
[22] classifying the stable singularities of smooth maps from the plane to it-
self (the fold and the cusp), and Thom’s own generalisation of this to higher
dimensions [18]. Having secured his reputation in pure mathematics with his
Fields medal in 1958, Thom felt emboldened to explore the philosophy of appli-
cations. He had always been interested in the natural world and had a healthy
scepticism of conventional science. He was influenced not only by his own work
on singularities, but also by some experiments that he did with light caustics
(which I shall explain below), by some graphic models that he once saw of the
unfolding embryo, by D’Arcy Thompson’s book On growth and form [20], and
by an earlier paper of mine on a topological model of the brain [24]. In moving
from differential topology towards dynamical systems and applications Thom
was to a certain extent moving into Smale’s territory, although the types of
applications that they were interested in lay in different boxes: Smale’s were
primarily in the Time Box, whereas Thom's were firmly in Pandora’s Box.

Thom discovered the main theorems classifying the elementary catastrophes
in the early 1960’s; he invented the mathematical concepts necessary to prove
them and sketched out the broad lines of proof, but there were still some
gaps. In particular he got stuck at the preparation theorem, so he persuaded
Malgrange (against his will according to MALGRANGE [13]) first that it was
true, and then to prove it. He also inspired Mather to develop the analysis
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of germs [14]. The proofs were complete by 1968, and Thom summarised
the results in his book Structural stability and morphogenesis [19], which was
mainly about applications and an outline of his general theory of models. After
some delay the book appeared in 1972,

THE PRECURSORS

1945 Whitney's theorem [22] classifying stable singularities
of maps of the plane (the fold and the cusp)

1956 Thom’s extension to higher dimensions [18]
1958 Thom is awarded a Fields Medal

1966  Smale is awarded a Fields Medal
CATASTROPHE THEORY

1968 Thom'’s theorem classifying elementary catastrophes
(with help from Malgrange and Mather)

1972 Thom's book Structural stability and morphogenesis [19]
THE CONTROVERSY

1974 Zeeman’s address to the Vancouver Congress [25]

1976  Zeeman's article in Scientific American [26)

1977 Zahler & Sussman’s article and the replies in Nature [23]
1977 Zeeman’s book Catastrophe theory [27)

1978 Smale's review in the Bulletin of the American
Mathematical Society [15)]

1980 Smale reprints the review in his book
The mathematics of time [16]

Ficurg 4. The catastrophe theory controversy.

I myself became involved when I took a sabbatical year during 1969/70 at the
Institut des Hautes Etudes Scientifiques in Paris, where Thom was one of the
permanent professors. 1 had just spent five years setting up the Mathematics
Institute at Warwick, and was ready to explore a new line of research. I was
fascinated by Thom’s ideas and began to see how they could be applied to all
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branches of science. I was impressed by the depth and beauty of the mathe-
matics. The geometric approach particularly appealed to me because it gave
an overall grasp and insight into phenomena that had previously appeared to
be opaque or unmodellable. I also liked the elegance of the models, in that the
theorems guaranteed the existence of intrinsic coordinates in an application
with respect to which the model took on canonical form. My own approach
was complementary to that of Thom; I was the pragmatic anglo-saxon com-
pared with his gallic philosopher. While he painted the broad canvas I tried to
work with scientists suggesting simple concrete models, designing experiments,
and making predictions that they could test. In particular some of my models
in the biological and behavioural sciences began to attract attention, and led
to some exaggerated claims in the press. After my address [25] to the Vancou-
ver International Congress of Mathematicians in 1974, and an article [26] in
Scientific American in 1976, I received over ten thousand requests for reprints.
Soon hundreds of scientists began using catastrophe models in the physical,
engineering, biological, medical and social sciences [21].

Of course the word ‘catastrophe’ itself was partly to blame for the publicity,
and at the time I did have some misgivings about Thom's choice of this word.
In retrospect, however, I think it was a wise and courageous choice on his part,
because it focused attention upon the sudden jumps, enabling researchers to
perceive them, discuss them, look for them, design experiments to test for
them, and process the data so as to reveal them.

For example I was talking to a psychiatrist who was showing me some os-
cillatory graphs of the mood-swings of his manic-depressive patients, and so
I naturall> asked him whether or not the swings were catastrophic, meaning
whether o1 not they were sudden, and whether or not the moods in between
were stable. To find out I suggested that he record the patients’ moods hourly
instead of weekly. To his surprise he discovered that they were indeed catas-
trophie, much more so than he had previously suspected.

Smale, meanwhile, became increasingly sceptical about catastrophe theory.
He felt it had limited substance, great pretension and that catastrophe theorists
had created a false picture in the mathematical community and the public as to
its power to solve problems in the social and natural sciences. He encouraged
other critics like Zahler and Sussman to challenge this false picture in print. It
was the sharpness of their attack that attracted attention and gave rise to the
perception of a controversy. Their criticism, however, came to an abrupt end
after they had published an article [23] in Nature in 1977, because all the replies
in Nature [23] from mathematicians, physicists and biologists were unanimously
in favour of catastrophe theory; the replies pointed out the misquotations and
misrepresentations in Zahler and Sussman’s article, and drew attention to a
variety of successful applications that they had ignored.

When my book Catastrophe theory [27] appeared later that year Smale de-
cided it was time to show his hand, so in 1978 he offered to review the book
for the Bulletin of the American Mathematical Society. This review [15] was
evidently an important paper for Smale, because in 1980 when he published his
own book The mathematics of time [16] containing his eleven best papers in dy-
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namical systems he rather surprisingly included amongst them this somewhat
negative review.

And there the controversy more or less ended. The main reason why it was
so short-lived compared with the vibrating strings controversy was that the
underlying mathematics of elementary catastrophe theory had been established
before the controversy began. Today this mathematics continues to develop and
merge seamlessly with that of the neighbouring fields of differential topology,
singularity theory, global analysis, dynamical systems, bifurcation theory and
chaos. And scientists in many disciplines continue to quietly use catastrophe
models whenever they are appropriate.

Smale’s chief complaint was that the publicity had given a misleading im-
pression of the importance of catastrophe theory compared with the rest of
dynamical systems. At the time this criticism had some validity, but today it
looks as ephemeral as the publicity itself. Yesterday’s fashion was catastrophe,
today’s fashions are chaos and string theory, and tomorrow’s fashions will be
something else. The exaggerated claims of journalism today on behalf of any
new theory are in fact the reverse side of a good coin, namely the increasing
public interest in science; and Smale admits that it is important for scientists
to be aware of mathematical possibilities for models.

Smale’s main criticism of Thom was to say that when he (Thom) proceeds
beyond elementary catastrophe theory he loses pretty much any direct contact
with mathematics. The elementary theory concerns point attractors, and the
interest comes from the variation due to changing parameters. Non-elementary
theory concerns more complicated attractors, such as the catastrophic jump
into a chaotic attractor at the onset of turbulence. It also includes generalised
catastrophes such as the boundary of a set of elementary catastrophes, like the
surface of a tree being the limit of a set of branching twigs, or the surface of a
lung being the limit of a set of branching bronchial tubes. It is true that the
mathematics of such examples is still in its infancy, and nowhere near any kind
of classification as there is in the elementary theory. Developmental biology is
also still in its infancy, because there are very few models yet to describe how
the DNA code determines the unfolding of the embryo. But Thom’s vision
was to try and imagine in his general theory of models what will be needed
in the mathematics and biology of the future in order to solve these problems.
His writing is often provocative, because he wants to provoke the reader’s own
imagination as to what will be needed. And he finishes his book with the words:

A mathematician cannot enter on subjects that seem so far removed
from his usual preoccupations without some bad conscience. Many
of my assertions depend on pure speculation and may be treated as
day-dreams, and 1 accept this qualification - is not day-dream the
virtual catastrophe in which knowledge is initiated? At a time when
so many scholars in the world are calculating, 1s it not desirable
that some, who can, dream?

Smale disappointingly chooses not to address Thom’s main idea, apart from
sarcastically quoting a few of Thom’s choicer remarks. This may have been
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because Thom had deliberately chosen to write at the levels of mathematics
and the philosophy of science, rather than at the scientific level in between. He
knew that the mathematics was unassailable, and he wanted to stimulate debate
about the science of the future (as opposed to science of the past, which is what
most philosophers of science usually talk about). Consequently he was quite
amused at the controversy, while at the same time standing somewhat aloof
from it. He had hoped that people would take up his philosophical challenge,
and was disappointed at the level of debate.

Realising that in D’Arcy Thompson’s 1917 book On growth and form [20]
most of the general principles had been right, but many of the specific details
had : ubsequently turned out to be wrong, Thom sought to avoid making the
same mistake by steering away from experimental prediction, and leaving that
to others. This was a quite a sensible policy from the point of view of keeping
his main ideas intact for the future, because although the failure of a few specific
models might be irrelevant to the success of the general theory, nevertheless
there was a danger that the former might be seen as a blemish on the latter.
On the other hand he was apt to complain that more biologists had not taken
up his ideas - but of course to achieve that it may be necessary to get one’s
hands dirty.

Meanwhile I was quite prepared to get mine dirty; consequently my models
were much more open to attack and Smale turned on them with relish. Let me
therefore give an illustration of the type of example that annoyed Smale and
the other critics, and for your amusement I will choose one in economics that
is new and topical. Then I will attack it as Smale would have done, using his
own words from his review, and then I will respond with a defence.

MODEL OF THE DEVALUATION OF THE POUND

The model concerns the currency markets and the recent catastrophic devalua-
tion of the pound in September 1992. It could also apply to future devaluations
of other currencies. If the exchange rate is flexible then the value of the pound
floats freely up and down with the rise and fall of confidence in the pound, as
shown in Figure 5(i).

(2) (i1)

value value

revaluation

devaluation

con fidence, a ' confindence, a

T

FIGURE 5. Graphs showing how the value r depends on confidence a when
the exchange rate is (i) flexible or (ii) constrained.
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If the exchange rate is constrained, however, as it was in the ERM (the Euro-
pean Exchange Rate Mechanism) then a fall in confidence does not induce a
corresponding fall in value because of the defensive intervention by the central
banks, until a sufiiciently low threshold is reached where it triggers a sudden
devaluation. Similarly a rise in confidence again does not induce a rise in value
until a much higher threshold is reached, where it triggers a sudden revalua-
tion, as shown in Figure 5(ii). The middle dotted part of the graph represents
unstable equilibria, and so is not observed in practice,

Suppose now that the level of flexibility can be made into a continuous pa-
rameter, b. Then we can combine Figures 1 and 2 into the cusp catastrophe
shown in Figure 6. Here let R* denote 3-dimensional space; the two horizon-
tal axes represent the two parameters, confidence e and flexibility b, while the
vertical axis represents the value z. The surface M in R? is the graph of z
over a,b and shows how the value depends upon both market confidence and
exchange rate flexibility.

The recent history of the pound can now be visualised as a path in the param-
eter space, inducing a corresponding path on the surface of the graph above.
The path starts in 1985 when the pound began tracking the deutschmark, thus
increasing market confidence and reducing exchange rate flexibility (in other
words increasing both a and b). When the UK joined the ERM in 1990 flex-
ibility was further reduced. Confidence in the pound then began to fall but
the value was protected, because it was being held on the upper surface of the
graph near the front. In September 1992 the parameters had reached the point
B. There was still some way for the confidence to fall before it reached the
threshold €' that would trigger devaluation. The Bundesbank made a sugges-
tion, however, of a possible basket of currency realignments, which introduced
a new perception of flexibility within the ERM. This had the effect of moving
the parameter point from B to D, thus triggering the devaluation at D. The
interesting mistake that the UK made was to concentrate on defending itself
against the move from B to (" while overlooking the more vulnerable move from
B to D. As a result the UK was cross with Germany for triggering this move,
while Germany was cross at being criticised for trying to be more flexible. The
pound meanwhile is now floating back to its original starting point. We can
justify the cusp catastrophe in Figure 6 by making two hypotheses as follows.

HyproTHESIS 1. There is a value b, such that the sections of the graph in
Figure 6 are equivalent to Figure 5(i) if b < b,, and Figure 5(ii) if b > b,,.

HypoTHESIS 2. The market can be implicitly modelled by a parametrised
dynamical system D on a space X. X may be either 1-dimensional with co-
ordinate r, or multi-dimensional with = as one of its coordinates (the other
coordinates including possibly the values of other currencies). The parameter
space is R? with coordinates a,b. The dynamic D has a generic parametrised
Lyapunov function f. Let M denote the subset of R? x X consisting of the
equilibria of D, which are the same as the critical points of f. If X is 1-
dimensional then R? x X = R* and M is the surface shown in Figure 6. If X
is multi-dimensional then the projection of X onto the r-axis induces a map of
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R? x X onto R* throwing M onto the surface shown in Figure 6. The unshaded
part of M corresponds to stable equilibria (minima of f ), and the shaded part
to unstable equilibria (maxima or saddles of f).

DEDUCTION. By using Thom's deep classification theorem we can then deduce
that Figure 6 is a cusp catastrophe.

Let us now criticise the model as Smale would have done, using his own
words from his review. Then I will respond with an answer to each criticism,
and give an explanation of each answer below.

CriTicisMm 1. No justification is given for the model in terms of existing data
or economic theory. It fits the caricature of a mathematician throwing a model
to the economists to pick up and develop.

ANSWER 1. True, but intentional.

CrrTiciSM 2. Hypothesis 1 alone gives the structure of the surface in 3-
dimensions without using any mathematics at all. There is no need to involve
‘Thom’s deep classification theorem’, and to do so is not only misleading but
also mystifying and intimidating to non- mathematicians.

ANSWER 2. Criticism 2 is an elementary mathematical mistake on Smale’s
part, since there is a simple counterexample, given below, showing that Hy-
pothesis 1 alone does not imply a cusp catastrophe.

CRITICISM 3. Anyway the cusp is not Thom’s theorem but Whitney's theorem.
ANSWER 3. Criticism 3 is a serious mathematical mistake on Smale’s part,
revealing a misunderstanding of the difference between the two theories.

Let me now explain the answers.

ExPLANATION 1. The statements in Criticism 1 are valid, but 1 do not nec-
essarily regard them as criticism. [ gave several examples in my book of such
models that have led to useful scientific prediction and successful experimen-
tal confirmation, which Smale chose to ignore. As far as | know Smale in his
own writing does not make any scientific predictions, nor propose any scientific
experiments, and so he has no experience in the matter. He makes creative
mathematical conjectures, which are sometimes right and sometimes wrong,
but he never ventures to make scientific predictions. To give an example of
such a prediction let me digress by describing a simple model from Chapter 1
of my book which later led to successful confirmation by experiment.

DIGRESSION ON TERRITORIAL FISH

This is a model of the mood of a territorial fish defending his nest against
invasion by another male of the same species. The parameter in this case is the
distance of the invader from the nest. When the invader is far away the mood
is protective while the defender sits on his nest. When the invader crosses the
threshold A the stability of that mood breaks down and there is switch of mood
into an aggressive mood, causing the defender to attack the invader.
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FI1GURE 6. The cusp catastrophe, showing the graph of the value of the
pound as a function of market confidence and exchange rate flexibility.
The recent history of the pound is shown by the path on the graph.
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FIGURE 7. Switch of mood as the invader approaches.

We now make a hypothesis that the mood can be implicitly modelled by a
parametrised multi-dimensional dynamical system describing the neurological
activity in the brain of the fish. Moods are represented by stable attractors
of the system. But the attractors of a parametrised dynamical system exhibit
hysteresis. In other words the threshold B where the stability of the aggressive
mood breaks down, causing the reverse switch back to the protective mood, is
different from A. Therefore the graph is as in Figure 8.

Mood of the defender

aggressive
attack B
[ disengage
W x protective
NEST A B Distance of an invader
inner outer
radius radius

FiGURE 8. Graph of mood over distance.

Here we are implicitly mapping the multi-dimensional space of the dynamical
system onto R in such a way as to map the attractors underlying the protective
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and aggressive moods to different points. In an experiment, however, there is
no need to measure the mood neurologically because the switches of mood can
be observed psychologically by the change of behaviour, and the distance from
the nest of the points A, B where these switches are observed to take place
can be measured. Therefore, although the hypothesis is implicit and the model
qualitative, nevertheless the prediction is quantitative; the fish’s territory will
have two radii that can be measured, an inner radius where he attacks and an
outer radius where he disengages. When I discussed this idea with biologists
I found that the concept of a territory having two radii was new to them, so
in 1976 1 published the model in Scientific American [26] and reprinted it in
my book [27]. In effect I was following Smale’s caricature of a mathematician
throwing a model to the biologists to pick up and develop, as described in
Criticism 1.

And sure enough, without my knowing, the biologist P.W. CoLGAN [6]
picked it up and decided to test the prediction on pumpkinseed sunfish nesting
in their natural habitat on the bottom of Lake Opinicon near Kingston, Ontario.
The water was clear and about a metre deep. He and his students made dummy
wooden models of invaders in an aggressive posture, and marked the points
where the defenders attacked and disengaged. They confirmed the prediction
and found that in several hundred trials during the nest-building phase the
average values of the two radii were 13cm and 18cm (£ 0.2cm). Moreover they
found that an interesting social structure resulted from this behaviour. The
nests were close-packed so that the inner perimeter of one abutted onto the
outer perimeter of the next; indeed one can see that if they were to overlap then
the two fishes could get into a fight, both locked in the aggressive mood, until
one was injured causing his nest to disappear. Between the inner territories was
a buffer zone where other fishes could swim freely without being attacked, and
through which the females could thread their way safely to visit their partners,
as shown in Figure 9. The buffer zone is thus an evolutionary advantage arising
from the naturally occurring hysteresis in the dynamics of the brain.

Ficure 9. Close-packing of the territories.

One is tempted to say ‘how very human’, thereby tacitly admitting that the
territorial imperative in the human species is instinctive rather than rational.
Indeed this may be true because the territorial instinct appears to be located
in the R-complex. which is the philogenetically oldest part of the human fore-
brain that evolved some three hundred million years ago in our ancestors the
mammal-like reptiles. whereas rational thought appears to be located in the
cortex. which is the newest part of the forebrain that evolved some thirty mil-
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lion years ago in primates.

We end the digression and return to Criticism 1 of the economics model. 1 do
not have the expertise to justify it in terms of existing data or economic theory,
but in spite of this I believe the model is potentially useful if it gives insight into
the relationship between confidence and flexibility. In particular if economists
were able to measure flexibility this might lead to the design of exchange rate
mechanisms that were more flexible than the ERM but less flexible than a free
market, in which it was possible to make realignments of currency in times of
falling confidence that were more controlled and less catastrophic.

EXPLANATION 2. Smale devoted a third of his review to Criticism 2, and made
an elementary mathematical mistake. At first sight it may look as if Hypoth-
esis 1 implies a cusp catastrophe, but that is false, and I give below a simple
counterexample to prove it is false. The reason why it looks true is that I have
deliberately arranged the hypotheses so that they are transparently as plausible
as possible to social scientists, exactly as I did for the two particular examples
in my book that Smale chose to criticize. In effect I am saying to the reader: if
you are willing to accept the geometrically explicit Figure 5 and Hypothesis 1
then I can prove rigorously that Figure 6 is a cusp catastrophe, provided that
you also allow me to assume the implicit Hypothesis 2. The crucial word in
Hypothesis 2 is generic' and it is plausible because by Thom’s theorem generic
functions are open dense in the space of all functions. This is the real power
behind the theorem; openness implies that generic models are stable under
perturbation, and density implies that any model can be approximated by a
generic one. In other words generic models are universally good for applied
mathematics in the same way that Bernoulli’s solutions were universally good
for the vibrating string.

The counterexample shows that Hypothesis 2 is necessary, and Thom's the-
orem shows that it is sufficient. Here sufficient means that Hypotheses 1 and 2
together imply that Figure 6 is cusp catastrophe (in other words is equivalent to
the canonical model - see the definition below). The simplest way to prove this
is to appeal to Thom’s classification. One can also prove it directly from the
hypotheses without appealing to Thom'’s theorem, but the direct proof (even in
the case when X is only 1-dimensional) is almost as long as the proof of Thom’s
theorem itself, since it involves having to show the equivalence of both germs
and unfoldings. When Smale claimed in his review that it followed ‘without
using any mathematics at all’ he evidently was not aware of the definition of
a cusp catastrophe and did not realise it was necessary to prove that it was
equivalent to the canonical model,

Before writing my book [27] I tried for some years to shorten the proof
of Thom's theorem, particularly in the case when X was l-dimensional, in
order to make it available to the more mathematically inclined biologists and
social scientists, but without success. In Chapter 18 of the book I managed to
reduce the complete proof to 66 pages, but this is not easy reading for non-

LA parametrised function is defined to be generic if the induced map into the germ space
is transversal to the natural stratification of the germ space [see 27],
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mathematicians. That is why I use the word ‘deep’, as a warning to scientists
that if they need to be sure of handling the mathematics correctly then it may
be advisable to collaborate with a mathematician who does understand the
proof.

Before constructing the counterexample we need to define the canonical
model.

DEFINITION OF THE CANONICAL CUSP CATASTROPHE
The canonical cusp catastrophe is defined as follows.
- The parametrised Lyapunov function f : R* — R is given by
1, 1, .
& — _ 2

fla,b,x) = 3% —ar- Eb;r. :
- The parametrised dynamic on R is given by

T ==f
- The equilibrium surface M, C R*, is given by

o=zt -a-bz=0.

The map x : M — R? is induced by the projection 7 from onto R?* the param-
eter space R? given by w(a,b, ) = (a,b).

The bifurcation set B, is defined as the image in R? of the singularities of y.
and is obtained by eliminating x from f, = f,, = 0, giving the cusp

27a% = 4b°%.

There is analogous definition for when the space X of the dynamic is multi-
dimensional rather than 1-dimensional [see 27].

DEFINITION OF A CUSP CATASTROPHE

Let f': R® — R be another parametrised Lyapunov function for some dynamic
(not necessarily the gradient of f’ ). Suppose that f’ determines M',y’, B'
as above. We say that f' is a cusp catastrophe if it is porametrised-function-
equivalent to f, in other words there are diffeomorphisms «, 3,7 such that the
diagram commutes:



278 E.C. Zeeman

o

R® diffeo R3

mxfl Laxf’

a

R xR diffeo R? xR

7] | =
R diffeo RZ

where 7 always denotes projection onto the parameter space R?. It follows that
\, X' are map-equivalent, in other words that the diagram commutes:

ot
M diffeo M

x | LRt %

3y

2 l’ 2
R? diffeo R N BN

Therefore 4y maps B to B'. Therefore the cusp on B is mapped to a cusp on B’,

since a cusp on a curve is a diffeomorphism invariant. Therefore B’ contains a
cusp.

THE COUNTEREXAMPLE

To construct a counterexample to Criticism 2 it suffices to find an f’ such
that M’ satisfies Hypothesis 1 and B’ does not contain a cusp. The trick is
to replace a by a® in the formula for f. This does not qualitatively alter the
sections of M’ so they remain equivalent to those in Figure 5 and continue to
satisfy Hypothesis 1. But it converts the bifurcation set B’ into the parabola

3a® = 41/3p.

Therefore the cusp is lost. Therefore it is not a cusp catastrophe. And in
the economics application the subtlety of the discussion on what triggered the
currency devaluation is lost.

The explanation is that f' is not generic and so does not satisfy Hypothesis
2. Furthermore one can make worse examples B” by replacing a® by a**, for
any positive integer k as shown in Figure 10.
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cusp parabola worse

b L b
Ficure 10. Bifurcations sets.

I actually explained this little counterexample to Smale in the presence of Moe
Hirsch, Mike Shub and John Guckenheimer while I was Hitchcock Professor at
Berkeley in 1977. He was extraordinarily resistant to receiving it, and it took a
long time to get across much to the surprise of the others because it normally
takes only a few minutes to explain to a dynamical systemist. By the time
Smale came to write his review he had evidently forgotten it again; perhaps
Criticism 2 was one of the things that he acknowledges he learnt from Zahler
and Sussman, since they also made the same mistake in an earlier paper.

EXPLANATION 3. Criticism 3 is a serious mistake which suggests that Smale
did not fully understand the difference between Whitney’s theorem and Thom’s
theorem. Whitney classifies stable singularities of maps, whereas Thom classi-
fies elementary catastrophes. Now the elementary catastrophes also give rise to
certain singularities of maps (from the equilibrium manifold to the parameter
space), which are able within the context of catastrophe theory, but which are
not the same as the Whitney singularities in dimensions greater than 2. The
two classifications happen to coincide in dimension 1 (the fold) and dimension
2 (the cusp), but to establish that fact it is necessary to separately prove both
Whitney's theorem and Thom’s theorem. You cannot deduce Thom’s theo-
rem in dimension 2 from Whitney’s theorem as Smale seems to think; it is a
question of extending the diffeomorphism a|M of the map-equivalence to the
diffeomorphism a of the parametrised-function-equivalence (see above), which
requires the full panoply of the preparation theorem. That was why it took
most of the 1960’s to prove Thom’s theorem.

The fact that the two classifications differ in dimension 3 is historically in-
teresting because that was how Thom actually discovered catastrophe theory.
He was experimenting with 3-dimensional light caustics expecting to find only
the swallowtail (because that is the only Whitney singularity in R3), and was
astonished to observe also the umbilics. He had been thinking it was a map
problem, and suddenly realised it was a function problem: the function in this
case is the geodesic distance from points on the wave front to points near the
caustic, and the rays of light follow the critical geodesics perpendicular to the
wave front [see 19].
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FiGURE 11. Light caustics.

If Smale thought that it was possible to deduce Thom's theorem from Whitney's
theorem then I can understand why he used to complain about my use of the
word ‘deep’, because the proof of Whitney's theorem is much more accessible
to the scientist than that of Thom's. It is ironic that I explained in detail
the difference between the two classifications in the very book that Smale was
purporting to review.

CONCLUSIONS ABOUT THE CATASTROPHE THEORY CONTROVERSY

1. The controversy was relatively short-lived because the underlying math-
ematics had already been established and was uncontroversial.

2. The controversy was mainly about applications, and between mathemati-
cians rather than between experts in the fields of those applications.

3. The controversy was similar to that between d’Alembert, Euler and Bernoulli
in that both Thom and Smale made major positive contributions to topol-
ogy and dynamical systems, but Smale's negative contribution was not so
great. As I said in my address [11] at the banquet for his 60th birthday:

The real evidence for the excellence of Steve’s mathematical judge-
ment s the number of mathematicians world-wide who now follow
his taste. In fact I have only known him to make one serious error
of judgement, and that was his opinion of catastrophe theory.
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