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Assumptions:

(a) Intersections
In general (i) 2 planes meet in a line
(ii) a line meets a plane in a point
(iii) 3 planes meet in a point.
Exceptions occur when (i) the 2 planes are parallel; (ii) the line is
parallel to, or contained in, the plane; (iii) the 3 planes are parallel, or
the line of intersection of 2 of them is parallel to, or contained in, the
third.
(b) Two lines
2 lines are contained in a plane if and only if they meet or are parallel. If
2 lines are not contained in a plane then they neither meet nor are
parallel, and they are called skew.

Definitions of perpendicular.

(i) 2 meeting lines are perpendicular if they are at right angles.

(ii) 2 skew lines are perpendicular if a line parallel to one and meeting
the other is perpendicular to it.

(iii) A line is perpendicular to a plane if it is perpendicular to 2 non-
parallel lines in the plane, and consequently to every line in the plane.

(iv) 2 planes are perpendicular if there is a line in one perpendicular to
the other.



1. PERSPECTIVE

B
Imagine painting a 3-dimensional scene W
on a pane of glass P placed in between the / o 5
the scene and the eye E. £ 8

Definition 1. The image A of a point A is

where the ray EA pierces P. If also the 5
image of B is B’ then the image of the line
ABis A'B'.
Definition 2. The vanishing point V of a ‘i"‘*—-
‘_‘—---__-'—\-

set S of parallel lines is where the / —_
parallel line through E pierces P. E\ 4 .

V. &
Theorem 1. All the images of S go through V. [ \\ e ==

__-__-_-"""'—-—._

Proof: It suffices to prove that the image of \P \:

one line, when extended, goes through V,

because by the same proof they all will. A
Let AB be the line. Then EV is
parallel to AB by definition 2, and
therefore they both lie in a plane Q.
The 3 points A’ B/ &V all lie in both
the planes P & Q, and hence on their

line of intersection. Therefore extending
A'B’ along this line goes through V.

Drawing a cube.
A cube has 3 sets of 4 parallel edges, and therefore a drawing of a cube
needs 3 vanishing points. Choose an acute-angled triangle XYZ, and use
the vertices as the vanishing points as shown. X - y
To then see the cube in perspective we
must place the eye E in a position such e . 4
that the lines EX,EY & EZ are parallel
to the edges of the cube, which are

perpendicular to each other. Therefore we define:

5
Definition 3. An observation point E is a point such that EX,EY & EZ are
perpendicular to each other.



Theorem 2. There is exactly one observation point in front of P.

To prove the theorem we shall need the following lemma:

Lemma. If EX,EY are perpendicular then E lies on the sphere diameter XY.
Proof. Complete the rectangle XEYF by drawing lines through X,Y parallel
to EY,EX to meet in F. Let O be the intersection of the diagonals XY & EF.
Then by symmetry OX=0E=0Y=0F.
Therefore the circle centre O and

radius OX is the circle diameter XY

which goes through E. If we spin this circle
about XY we obtain the sphere diameter XY.

Proof of Theorem 2. Let E be an observation point. Let S,T,U be the
spheres diameters XY,XZ,YZ respectively. Since EX,EY are perpendicular
E lies on S by the lemma, and similarly on T & U. Therefore we have to
find the intersection of all 3 spheres. If C is the circle

of intersection of S & T, then we have to find

the intersection of C with the third sphere U. g
Now X lies on C. Let D be the foot of the altitude
from X to YZ. Then D lies on S because XﬁY is a
right-angle. Similarly D lies on T and hence on C.

Meanwhile D lies in between Y & Z because
XYZ is an acute-angled triangle, and so D lies
inAside U. Meanwhile X lies outside U because
YXZ is less than a right-angle. Therefore C
contains points both inside and outside U.

Therefore C pierces U at 2 points. One of

these points lies in front of P and the other

is its mirror image behind P, because P is a plane of symmetry of all three
spheres. Therefore there is exactly one observation point in front of P, as
required.

Exercises.

1. Prove the observation point lies in front of the orthocentre of XYZ.

2. Draw on the board an equilateral triangle XYZ of side 1 metre. Use the
vertices as the 3 vanishing points to draw some rectangular boxes in
perspective. View from 1/J/6 metre in front of the orthocentre and
confirm that the boxes all look 3-dimensional and rectangular.

3. Prove that if XYZ is obtuse-angled then there is no observation point.
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2 REGULAR SOLIDS

Definition. A regular solid has all its faces equal to the same regular
polygon, and the same number of faces at each vertex.

Theorem. There are exactly 5 regular solids.

Proof. Given a regular solid, the ring of faces around a vertex contains at
least 3 faces, and if the ring is cut open along an edge and flattened out it
will occupy strictly less than 360 degrees. If the faces are equilateral
triangles the ring can contain only 3,4 or 5 triangles because 6 would
occupy the full 360 degrees; therefore there are 3 cases:

3 triangles W giving a tetrahedron @

4 triangles v@ giving an octahedron
5 triangles % giving an icosahedron

If the faces are squares there is only 1 case because 4 squares would
occupy 360 degrees:

3 squares _ giving a cube

[f the faces are pentagons there is similarly only one case:
3 pentagons giving a dodecahedron <

There are no more cases because 3 hexagons (or higher polygons) would
occupy 360 degrees (or more).

Exercises.

1. Make the five regular solids.

2. Count the numbers of faces, edges & vertices for each solid.

3. Show that each solid obeys the formula: faces-edges +vertices = 2.

4. Explain in what way the cube & octahedron are dual to each other, and
the dodecahedron & icosahedron are dual to each other, and the
tetrahedron is self-dual.

5. Explain why the union of 2 tetrahedra glued together along a common
face is not a regular solid. Show it obeys the formula above.

6. Make a buckminster fullerine (a carbon molecule or a football) out of 12
pentagons and 20 hexagons. Show it obeys the formula.



3 TETRAHEDRA

There are 4 theorems about 3 lines in a triangle meeting at a point: the 3
medians meet at the centroid, the 3 side-bisectors meet at the
circumcentre, the 3 angle-bisectors meet at the incentre and the 3
altitudes meet at the orthocentre. We shall show that three of these
theorems can be generalised to a tetrahedron in 3-dimensions, but the
fourth cannot.

Definition 1. A median of a tetrahedron is the line joining a vertex to the
centroid of the opposite face.

Theorem 1. The 4 medians of a tetrahedron are concurrent at a point G.
Proof. Let a,b,c,d be the vectors of the vertices A,B,C,D

(with respect to some origin). Then the A
centroid E of BCD has the vector e=(b+c+d)/3.

If G is the point with vector g=(a+b+c+d)/4 B

then g=a/4 + 3e/4. Therefore G lies on AE. G

Similarly for the other 3 medians. E D
&

Exercise 1. Show that G is the midpoint of each of the 3 lines joining the
midpoints of opposite edges of the tetrahedron.

Definition 2. The bisector of a line AB is the plane perpendicular to, and
through the midpoint of, AB; it is the set of points equidistant from A&B.
Theorem 2. The 6 edge-bisectors of a tetrahedron are concurrent at a
point S, which is the centre of the circumsphere. A
Proof. Let the tetrahedron be ABCD. Let S

bej‘(:afneet of the bisectors of AB,BC & CD.

Then AS=BS since S lies on the bisector of AB, B
BS=CS since S lies on the bisector of BC, and
CS=DS since S lies on the bisector of CD.

Therefore S is equidistant from all 4 vertices, and

C

so the sphere centre S through one vertex is the
circumsphere going through all 4, and S lies on every edge-bisector.

Exercise 2. Show that the 4 lines through
the 4 circumcentres of the 4 faces, and
perpendicular to those faces, are concurrent at S.



Definition 3. Let a,b,c,d denote the faces of the
tetrahedron opposite the vertices A,B,C,D. g
The two faces a,b meet in the edge CD: define the
angle-bisector of ab to be the plane through that D
edge making equal angles with a & b; it is the set £
of points equidistant from a & b.
Theorem 3. The 6 angle-bisectors of a tetrahedron are concurrent at a
point I, which is the centre of the insphere.
Proof. Let I be the meet of the angle-bisectors of ab,bc & cd. Then I is
equidistant from a & b since it lies on the angle-bisector of ab,
also from b & c since it lies on the angle-bisector of be, and
also from ¢ & d since it lies on the angle-bisector of cd.
Therefore I is equidistant from all 4 faces,
and so the sphere centre I touching one face
is the insphere touching all 4, and I lies
on every angle-bisector.

Exercise 3. Show that the 4 lines going through
the 4 vertices, each equidistant from the 3
faces at that vertex, are concurrent at I.

Definition 4. An altitude of a tetrahedron is a line through a vertex
perpendicular to the opposite face.

Theorem 4. In general the 4 altitudes of a tetrahedron are not
concurrent.

Proof. We construct a counterexample.
Let ABCD be the tetrahedron inscribed
in a cube as shown. Then the altitudes
through A & D are AB & DC, which do
not meet.

Exercise 4. Show that if the opposite edges of a tetrahedron are
perpendicular then the foot of each altitude is the orthocentre of the
opposite face, and the 4 altitudes are concurrent. Give two examples of
such tetrahedra.



4. SPHERICAL TRIANGLES

The theorem about the 3 angles of a triangle adding up to 180 degrees
can be generalised to spherical triangles, and then used to give the sum
of the 4 solid-angles of a tetrahedron.

Definition 1. A great circle on a sphere is the
intersection of the sphere with a plane

through its centre. A spherical triangle consists
of 3 arcs of 3 great circles. Let A,B,C be the
angles at the vertices (or more precisely
between the tangents to the sides at each

vertex). Let S = surface area of the sphere
T = surface area of the triangle.

Theorem 1. A+B+C = 180(1+4T/S).

Example 1. The triangle shown has 3 right-angles h
and so A+B+C=270. Meanwhile T occupies a quarter v
of the northern hemisphere and so T/S=1/8.

Example 2. If T becomes very small compared with S (like a triangle on
the surface of the earth) then the sum of the angles tends to 180.

To prove the theorem we need the following lemma.

Definition 2. Define the A-lune to be the area

between the 2 great circles through A.

Lemma. A-lune/S = A/180.

Proof. Looking down on S from above A
A-lune/S = 2A/360 = A/180.

Proof of Theorem 1. The 3 lunes cover the whole sphere, but cover the

triangle 3 times, which is 2 times too many, and the same with the
antipodal triangle. Therefore

A-lune + B-lune + C-lune = S + 4T.
Therefore

(A-lune + B-lune + C-lune)/S = 1 + 4T/S.
Therefore by the lemma

(A+B+C)/180 = 1 + 4T/S.

Multiplying by 180 gives the theorem.
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Definition 3. In a tetrahedron ABCD define the
solid-angle A to be T/S, where S is the area of
a small sphere centre A, and T is the area
of the triangle cut off by the tetrahedron.
Definition 4. Given an edge AB, define the
dihedral-angle of AB to be a/c, where ¢ is
the length of the circumference of a small
disc centred on and perpendicular to AB,
and a is the length of the arc cut off by

the tetrahedron. Notice that 1 unit of
dihedral angle equals 360 degrees.

C

(the sum of the 4 solid-angles) = (the sum of the 6 dihedral-angles) - 1.

Theorem 2. In a tetrahedron

Exercises.

1. Deduce Theorem 2 from Theorem 1.

2. Show that in a regular tetrahedron: dihedral-angles = cos™(1/3),
solid-angles = [3/2}005_'[1/3] -1/4.

3. Calculate the dihedral and solid-angles of the tetrahedron used in the

proof of Theorem 4 in Section 3.



5 KNOTS AND LINKS

Topology is sometimes called “rubber” geometry because it studies
properties like knotting and linking, that are much deeper than those in
the previous sections because they persist under more general rubber-
like transformations. Consequently the style of proof will be quite
different.

knotting &D linking Q

Definition 1. A knot is a closed curve in 3 dimensions. Two knots are
equal if one can be moved into the other.

8) (& @-&)-&

Definition 2. Two knots are unequal if one cannot be moved into the

other.
Trefoil @ @ Square knot

A curve is knotted if it is unequal to a circle. O

Example 1.

To prove inequality (or knottedness) we need to introduce an invariant,
namely a property of a knot that does not vary if we move the knot, and
show that the two knots have different values of the invariant.

Let K be a picture of a knot, with a finite number of crossings. At
each crossing the underpass is indicated by a break in the curve, and so
the curve is broken into a finite number of arcs.

Definition 3. We say K has code 3 if it can be 3-coloured as follows. Each
arc is one colour, and (1) at least 2 colours are used

2 (2) at each crossing 1 or 3 colours are used (for
/x ,X the overpass & the 2 sides of the underpass).
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Lemma 1. The trefoil has code 3.  Proof. :-‘e“:
Lemma 2. The circle has not code 3. T

Proof. Otherwise being all one colour would violate condition (1). O
Theorem 1. Code 3 is an invariant.

Corollary. The trefoil is knotted.

Proof of the Theorem.

We have to show that if K can be 3-coloured, and K is moved to L, then L

can be 3-coloured. Consider the following 5 types of elementary move:

Type I (& its inverse) )\ . Yo
Type II (& its inverse) —‘/—,——’"‘—\: «—> T~
Type 11 (which Is it i \ - N &
¢ which equals its own inverse
P quals ' \ 5 \
by turning upside down) o \

If K—L is a long complicated move imagine taking a film of it and
examining the film frame by frame. At each frame there is either no
change in the configuration of arcs from the previous frame, or else there
has been an elementary move. Therefore we can interpret the
complicated move K-L as a finite sequence of elementary moves. For
instance in the proof of Example 1 above the first and last steps
represent no change in the configuration, while the second and third
steps are elementary moves of types Il and I.

If we prove the theorem for elementary moves then it follows for
any sequence of such, and hence for any move. In each case we are given
a 3-colouring before the elementary move, and have to show there is a 3-
colouring after the the elementary move, without changing the colouring
of the rest of the knot, or of the ends of the elementary move that are
attached to the rest of the knot.

Type I (& its inverse) )
X, = > /\

Type II (& its inverse): there are 2 cases depending on whether the
ends are coloured the same or different

\
/
L 4
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Type III: there are 5 cases, and in each case we have to show that it
is possible to achieve a colouring satisfying condition (2)
by recolouring the little arc without changing any of the
other arcs, since they are attached to the rest of the knot.

This completes the proof of Theorem 1.

Lemma 3. The square-knot has not code 3.
Proof. The square knot contains 4 arcs, and so
2 of them must be the same colour. But any 2
arcs meet at some crossing. Therefore the third

arc at this crossing must be the same colour by
condition (2). Similarly the fourth arc must also
be the same colour, violating condition (1).
Corollary. Trefoil 74 square-knot.

However, this invariant is no good for proving that the square-knot is
knotted because neither the square-knot nor the circle has code 3.
Therefore we need to generalise the invariant, and for this we shall use
arithmetic modulo p as follows.
Definition 4: Mod p arithmetic. Let p be an odd prime. The set of
integers mod p is the set of integers 0,1,2,...,p-1. Given two integers a,b
we write a=b(mod p) if they differ by a multiple of p.
Definition 5. We say K has code p if the arcs can be labelled with integers
mod p such that (1) at least two arcs are labelled differently, and

ax ¢ (2) at each crossing the average of the two sides of the

underpass equals the overpass (mod p):
\b a+b=2c (mod p).
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Lemma 4. The square-knot has code 5.
Proof. Going round the knot we check each crossing:
0+2=2

2+3=0(mod 5) \)l
3+1=4
" , 2(‘

1+0=6(mod 5)

3

Theorem 2. Codes are invariant.
Proof. It suffices to check the elementary moves.

Type [ (& its inverse) & >
&/ N\ & a

Type II (& its inverse) /X" /-\ib—q,

ey T/
o’ N a e

Type III c

\
Ya —C 2e-b
- \
By— 2 &-L
\
Cv Qa-dh+C

Check: (2b-c)+(2a-2b+c) = 2a.
This completes the proof of Theorem 2.

Definition 6. The product of 2 knots is given by joining them together.

trefoil Q R’Q square-knot

A knot is called prime if it is not the product of two simpler knots. The
list of all 14 prime knots with less than 8 crossings is shown below.

Exercises.
1. Show that when p=3 then Definition 5 is equivalent to Definition 3.
2. Show that the product of the trefoil and square knot has codes 3&5.
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3. Calculate the codes of the prime knots with less than 8 crossings as
shown below. Since the circle has no codes this proves that they are all
knotted. It does not prove, however, that those with the same code are
unequal, and this requires a more sophisticated invariant.
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Linking is one of the most characteristic features of 3-dimensions. It is
intuitively and experimentally obvious that linked curves cannot be
separated, but we shall prove this mathematically by constructing an
invariant called the linking number L that measures how many times one
curve links the other.

Os > & & &
L=0 L=1 I:=2 L=0 L=]
(Incidentally the same proof can be used to show that two spheres can be
linked in 5-dimensions, where intuition is less obvious and experiment is

impossible.)
Definitions. To orient a curve means to choose one
or other of the two directions going round the curve; Q
the orientation is indicated by an arrow. To span
a curve means to choose a disc whose boundary is
W \N\D
allowed to intersect itself if the curve happens to be knotted.)
Definition of linking number L. Given two curves A,B we make 3 choices:
(1) orientations of A & B;
(2) either A or B to span, say B; and

(3) a disc b spanning B.
Then A will pierce b in a finite number of points. @ /!;_

We call a particular piercing positive if A B 3
pierces b in the direction that a right-handed \l( l
corkscrew would move if it were screwed

the curve. (The disc may itself be curved, and is

in the direction of the orientation of B; otherwise call it negative. Let P be
the number of positive piercings and N the number of negative piercings.
Define the linking number L to be the difference between P&N.

Example.

oy 2t
oy
e

Theorem. L is invariant.

Proof. We have to prove firstly that L is independent of the 3 choices, and
secondly that it does not vary when the curves are moved. The second
part is easy because if the disc is moved along with the curves then the
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number of piercings will be conserved. Hence the burden of proof lies in
showing that L is independent of the 3 choices.

(1) If one of the orientations is reversed then the sign of each
piercing is reversed. Therefore P & N are interchanged, and their
difference L is the same.

(2) Suppose we chose to span A rather than B, and chose a disc a
spanning A. Let P' & N' be the numbers of positive & negative piercings
of a by B, and let L' be their difference. We have to show that L=L’ .

The intersection of a & b consists of a finite number af arcs and closed
curves. Forget the closed curves and concentrate on the arcs because
their ends will be the piercings of

| / P
a

b by A and a by B. Orient the arcs
IVl
giving the direction of orientation, v <L ! 1]

so that at each point, if r is a vector ‘
/ VD, /
and p.q are vectors giving positive //y /////
¥

piercings of a,b, then (p.q,r) is a
right-handed set of axes. Then the
front ends of the arcs will be the positive piercings of a by B and the
negative piercings of b by A, while the back ends will be the
complementary piercings. But the number of front ends is the same as
the number of back ends. Therefore P'+N=N'+P. Therefore N-P=N'-P’.
Therefore L=L’, as required.

(3) Finally suppose we chose a different disc b” spanning B, giving
rise to a linking number L”. Then L"=L'=L by (2) above, and so L"=L as
reqired. This completes the proof of the theorem.
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Exercises.

1. Show that q has L=2. Is it equal to @) i

2. Calculate the linking numbers of

3. Show that the link below has L=0. This does not imply, however, that
the curves are unlinked. To prove that they are in fact linked show that
unlinked curves have code 3, but this link does not.

&

4. Draw an example of 3 linked curves that are pairwise unlinked.
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6. SOLUTIONS TO THE EXERCISES
Section 1.
1. Let E be the observation point, and O the orthocentre of XYZ. The
plane containing the circle C is perpendicular to P and contains E & the
altitude XD, and hence O and the line OE. Similarly the planes containing
the other 2 circles of intersections of the 3 spheres are perpendicular to
P and contain OE. Therefore OE is perpendicular to P, as required.

2. With respect to axes EX,EY,EZ ’ X >/

the orthocentre O has coordinates _
(1/3]2, 1/3]2, 1/3[2). Therefore
EO =[3/18 = l/j-6'.

Z

3. If X is obtuse then X lies inside the sphere U, along with D,
and so C lies inside U. Therefore C does not meet U. Therefore the 3

spheres do not meet, and so there is no observation point. If Y or Z is
obtuse then D lies outside U, along with X, and so C lies outside U. Again
C does not meet U, and so there is no observation point.

Section 2.

2&3. _Solid faces edges vertices
tetrahedron Bt 6 4 4-6+4=2
cube 6 12 8 6-12+8=2
octahedron 8 12 6 8-12+6=2
dodecahedron 12 30 20 12-30+20=2
icosahedron 20 . 30 12 20-30+12=2

4. Put a dual-vertex at the centre of each face. Join 2 dual-vertices with a
dual-edge if the corresponding faces have an edge in common. Then
below each vertex there is a dual-face, and they bound the dual-solid.

5. It does not have the same number of faces at each
vertex, 3 faces at 2 vertices and 4 faces at 3 vertices.
Faces=6, edges=9, vertices=5, and 6-9+5=2.
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6. The buckminster fullerine.
Faces = 12420 = 32,
edges = (12X5 + 20x6)/2 =90,
vertices = (12x5 + 20x6)/3 =60.
Therefore 32-90+60=2.

Section 3.
1. Let X,Y be the midpoints of AB,CD. Then x=(a+b)/2, y=(c+d)/2 and so
g=(a+b+c+d)/4 =(x+y)/2. Therefore G is the midpoint of XY.

2. The line perpendicular to ABC through the circumcentre of ABC is the
set of points equidistant from A,B,C, and therefore contains S. Similarly
for the other 3 lines.

3. The line through A equidistant from b,c,d goes through I, and similarly
for the other 3 lines.

4. Let AE be an altitude of the tetrahedron,

and suppose BE meets CD in X. Now AE is
perpendicular to BCD, and so AE is perpendicular
to CD. Meanwhile AB is perpendicular to CD by
hypothesis. Therefore ABE is perpendicular to
CD. Therefore BX is perpendicular to CD, and

is hence an altitude of BCD. Therefore E lies on all the altitudes of BCD,
and is hence the orthocentre of BCD.

Meanwhile AX is perpendicular to CD, and is hence an altitude of
ACD, containing the orthocentre F of ACD. Therefore the altitude BF of
the tetrahedron lies in the plane ABE, and hence meets AE. Therefore all
4 altitudes of the tetrahedron meet pairwise, and are not coplanar, and so

they must be concurrent.
Examples (i) The regular tetrahedron. Z L

(i) The tetrahedron OXYZ where
X.Y,Z are the unit points on the axes OX,0Y,0Z.
Let C be the centroid of XYZ. Then the altitudes
of the tetrahedron are OC, X0,YO,ZO, which
are concurrent at O.
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Section 4.
1. Let d(AB)=dihedral-angle of AB, and s(A)=solid-angle of A. Then
d(AB)+d(AC)+d(AD)=(1+4s(A))/2, by Theoreml (since 180 degrees
equals half a dihedral unit).
Summing over the 4 vertices repeats each dihedral-angle twice:
2(sum of the 6 dihedral-angles) = 2 + 2(sum of the 4 solid-angles).
Dividing by 2 gives Theorem 2. A

2. Let e be the dihedral-angle of a regular

tetrahedron ABCD. Let E be the midpoint of CD,

and O the centroid of BCD. Then 3(OE)=BE=AE.

Therefore cos e=1/3. Therefore e=cos ' (1/3). B “ =
The solid-angle = (6e-1)/4 = (3/2)cos'(1/3)-1/4.

3. Dihedral-angles AB,CD = 1/8
AD =1/6
AC,BC,BD = 1/4
Solid-angles AD = 1/48
B.C=1/16.
Check: 2/48 +2/16=2/8+1/6+3/4 - 1.

Section 5: knots.
1. Use as colours 0,1,2. If one colour is used at a crossing then trivially

the overpass is the average of the underpasses; if 3 colours are used then
O+1=4(mod 3), 1+2=0(mod 3), and 2+0=2.

2. The product has code 3 by labelling the trefoil appropriately with the
integers mod 3 and labelling the square-knot all the same. Similarly it has
code 5 by labelling the square-knot appropriately with the integers mod 5
and labelling the trefoil all the same.

3. The first two cases of trefoil and square-knot have already been done.
In each of the other dozen cases we start by labelling one crossing with
0,1,2, then the next with 1,2,3, and so on preserving averages until the
penultimate crossing (indicated by an arrow) which gives an equation for
p. Then the last crossing is satisfied automatically, and provides a
convenient check for the computation.
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3+0=8(mod p)
5=0(mod p)
p=5

O+1=10(mod p
9=0(mod p)

P=3

3+0=16(mod p
p=13

O+1=12(mod p
p=11

8+1=-6(mod p)
15=0(mod p)
p=3 or 5

7+12=0(mod p
p=19

O0+1=8(mod p)
p=7

2 3

) 4+1=16(mod p)

p=11

pN
|
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l
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) 5+0=12(mod p)

| p=7

5

5
0+5=18(mod p)
p=13

) |

¢

-~;:3(\
3O
4

a( > )3

=

D -
1Y

1+4=-12(mod p)
p=17

21=0(mod p)
p=3 or 7

5.
2 ///”H)

) (5;%£Eii§2ij3 8+13=0(mod p)
o1
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Section 5: links.
1.

Yes, equal. Proof:

Suppose it had code p.
Then 0+1=2x=2+3(mod p)
Therefore 4=0(mod p),

. contradicting p odd.
Therefore it has no codes.

4. The Borromean link. It can be seen that any 2 A B
of the 3 curves are unlinked. The 3 together are

linked, however, because they cannot be moved apart. &
Proof. 3 unlinked curves have all codes (because there

are no crossings), but the Borromean link has no codes. C
For suppose it had code p, and was labelled as shown. a
Then a+a'=2b(mod p), and a+a'=2b’(mod p).

Therefore 2b=2b’(mod p), and so b=b’(mod p)

CL!
/
since p is odd. Similarly a=a’(mod p). Therefore C/_)
2a=2b(mod p), and so a=b(mod p). Similarly &
e

o

b=c(mod p), violating condition (1), and giving a b
contradiction.





