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FROM LOCAL TO GLOBAL BEHAVIOR
IN COMPETITIVE LOTKA-VOLTERRA SYSTEMS

E. C. ZEEMAN AND M. L. ZEEMAN

ABSTRACT. In this paper we exploit the linear, quadratic, monotone and geo-
metric structures of competitive Lotka-Volterra systems of arbitrary dimension
to give geometric, algebraic and computational hypotheses for ruling out non-
trivial recurrence. We thus deduce the global dynamics of a system from its
local dynamics.

The geometric hypotheses rely on the introduction of a split Liapunov func-
tion. We show that if a system has a fixed point p € int R7 and the carrying
simplex of the system lies to one side of its tangent hyperplane at p, then there
is no nontrivial recurrence, and the global dynamics are known. We translate
the geometric hypotheses into algebraic hypotheses in terms of the definiteness
of a certain quadratic function on the tangent hyperplane. Finally, we derive
a computational algorithm for checking the algebraic hypotheses, and we com-
pare this algorithm with the classical Volterra-Liapunov stability theorem for
Lotka-Volterra systems.

1. INTRODUCTION

Consider a community of n interacting species modeled by the Lotka-Volterra
system

(1.1) 2 =xzi(b — Zaiﬂj) =z;(bi — (Ax);) = zi(b; — Ajz), i=1,...,n
=1

where z; is the population size of the ith species at time ¢, Z; denotes %’”ti, and A;
is the ith row of the matrix of coefficients A = (a;;). We restrict attention to the
closed positive cone R, and we denote the open positive cone by int R’ .

We call system (1.1) competitive when a;;,b; > 0 for all 4,5 = 1,...,n. It
is well known that two-dimensional competitive Lotka-Volterra systems have no
periodic orbits. M. L. Zeeman proved in [21] that in dimensions three and above,
competitive Lotka-Volterra systems admit Hopf bifurcations giving rise to isolated
periodic orbits. Hofbauer and So [5], Xiao and Li [17] and E. C. Zeeman [18] have
found examples of three-dimensional competitive Lotka-Volterra systems with at
least two isolated periodic orbits.
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716 E. C. ZEEMAN AND M. L. ZEEMAN

that when system (1.1) is competitive and has a fixed point p € int R", there is
no nontrivial recurrence if the carrying simplex lies to one side of its own tangent
plane at p. Thus, there is no recurrence on convex or concave carrying simplices
(Corollary 4.5). So when a three-dimensional competitive Lotka-Volterra system
undergoes a generic Hopf bifurcation, the carrying simplex must have negative
curvature somewhere.

In Section 5 we exploit the quadratic structure of system (1.1) to give algebraic
hypotheses (Theorem 5.3) from which the position of the carrying simplex relative
to its tangent plane at p can be deduced, so that Theorem 4.3 can be applied.
Then in Section 6 we derive a computational algorithm (Theorem 6.7) for checking
the algebraic hypotheses of Theorem 5.3 from local linear information at p. The
resulting computational hypotheses for ruling out recurrence in system (1.1) are
reminiscent of the classical Volterra-Liapunov Stability Theorem for Lotka-Volterra
systems (see [4, Theorem 15.3.1]). In Section 7 we give three examples to illustrate
how the two theorems compare, and to show that neither implies the other.

2. BACKGROUND

2.1. Monotone structure: the carrying simplex. It is easy to see that if sys-
tem (1.1) is competitive, then 0 is a repelling fixed point, and the basin of repulsion
of 0 in RY is bounded. The carrying simplex, denoted ¥, is the boundary of that
basin. To be precise, define B(0) = {z € R% : a(z) = 0}, and define ¥ = 6B(0),
where o(z) denotes the o-limit set of the trajectory through «, and B(0) denotes
the boundary of B(0) taken in RY.

Applying a theorem of Hirsch [3], as in [21], the backwards time monotonicity
structure of the competition can be exploited to show that ¥ is topologically and
geometrically simple, and that all the nonzero fixed points and other w-limit sets
of the system lie on X.

First some notation. A vector z is called positive if z € R and strictly positive
if z € int RY. Two points u,v € R are related if either u — v or v — u is strictly
positive, and weakly related if either v — v or v — u is positive. A set S is called
balanced if no two distinct points of S are related, and strongly balanced if no two
distinct points of S are weakly related.

Theorem 2.1 (Hirsch). If system (1.1) is competitive, then every trajectory in RT \
{0} is asymptotic to one in X; ¥ is a balanced Lipschitz submanifold homeomorphic
to the closed unit simplex in R” via radial projection, and int X is strongly balanced.

Brunovsky [1] and Mierczynski [10], {11] have given conditions under which the
carrying simplex is actually C'. Mierczynski [12], [13] has also proved that the
carrying simplex is not necessarily C! at its boundary.

2.2. Linear structure: nullclines and fixed points. It is well known that the
fixed points of a Lotka-Volterra system are found by exploiting the linear structure
of the per capita growth rates. The ith component, x;, of system (1.1) vanishes on
the coordinate hyperplane z; = 0, and on the sth nullcline N; given by A;z = b;,.
The system has a fixed point in int R? if the nullclines meet in int R}. More
generally, there is a fixed point at p € R™ if Ap = b, where b = (b;). If A is
invertible, then p = A~'b is unique, and if p € int R? we can rewrite system (1.1)
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LOCAL TO GLOBAL BEHAVIOR IN LOTKA-VOLTERRA SYSTEMS 717

as
(21) .’15,' =.’L‘,(bz—AZ$) =$,’A1’(p—.’l,‘), = 1,...,77,.

If A is not invertible, then the nullclines have either a line of intersection (at least),
or no intersection. So there cannot be a unique fixed point in int R7.

Similarly, if S C {1,...,n} and K is the coordinate subspace of R™ given by =, =
0,Vs € S, then system (1.1) has a fixed point at K N (ﬂ N;). If the corresponding

igS
principal submatrix of A is invertible, then there is at most one fixed point in
int K, where K, = KNRY.

Note that when system (1.1) is competitive, each nullcline N; is strongly bal-
anced, since it has strictly positive normal vector AT. There is a strictly positive
azial fired point r; where N; meets the x; coordinate axis. These axial fixed points
are at the vertices of the carrying simplex ¥.

3. SpLIT LiaAPUNOV FUNCTIONS

In this section we exploit the particular quadratic structure of system (1.1) to
define a split Liapunov function. Note that Theorem 3.1 and Corollary 3.3 do not
require the Lotka-Volterra system to be competitive.

Given system (1.1) with a unique fixed point p € int R}, let H be any hyperplane
through p. If 0 ¢ H, define H_ and H, to be the regions of R%} \ H containing
and disjoint from 0 respectively. We call H_ and H, the regions below and above
H respectively. If 0 € H, then label the two components of R} \ H as H_ and H;
in either order.

Theorem 3.1. Given system (1.1) with a unique fired point p € int R™ |, let H be
a hyperplane through p. Then there is a function V defined on int R} such that

V > 0 inintH_,

V = 0 onH,

V < 0 inintHy.
We call V the split Liapunov function corresponding to H.
Proof. Let h be a column vector normal to H, such that

reH. & RhT(p—1z)>0,
(3.1) reH & RT(p—12)=0,
reH; & h'(p-2z)<0.

Note that when H is strongly balanced, h is a strictly positive vector. Now A is
invertible, since p is unique, and so we can define a = AT A1 and write

(3.2) W =aAd =) a4,
=1

where A; is the ith row of A, as usual.
Now define
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718 E. C. ZEEMAN AND M. L. ZEEMAN

Then

V(.’L‘) = g_zvzz=vzatg:—z zvzalAl(p—.'L‘) :VhT(p—.'L‘)
: i=1 i=1

T3

by equations (2.1) and (3.2). But V > 0 on int R}. Therefore, by equation (3.1),

V > 0 inintH_,
V = 0 onH,
V < 0 in intH,.
O

Remark 3.2. The split Liapunov function V can be viewed as generalizing the
nullcline information in the following way. If we choose H to be a nullcline N,
then we can choose the normal h to be A;, so that a = e;, the ith standard basis
vector in R™. Therefore,

(3.3) V(z) =z,

and Theorem 3.1 reduces to the familiar fact that ; = 0 on N;, &; > 0 below N;,
and &; < 0 above N;.

Corollary 3.3. If system (1.1) has a unique fized point p € int R} and a nontrivial
periodic orbit v C int R, then v is either contained in a hyperplane through p, or
~ crosses at least twice all hyperplanes through p.

Proof. Let v C int R} be a T-periodic orbit of system (1.1). Let H be any hy-
perplane through p, and suppose (for contradiction) that vy H = (. Then either
v € int H_ or v € int H;. In either case, by Theorem 3.1, there is a split Li-
apunov function V, strictly monotone on +. But this contradicts the fact that
~¥(t) = v(t + T). Similarly, if v ¢ H, but touches H without crossing H, then V is
nonconstant and monotone on +, which also contradicts y(t) = (¢t +T) . Since v
crosses H, then it must cross H again to get back to the other side. Therefore,
crosses H at least twice. a

Remark 3.4. Since Corollary 3.3 holds for all hyperplanes H through p, we can
deduce that when n = 3 either v is flat (y € H for some H), or v is shaped
approximately like the seam on a tennis ball (v crosses all H through p at least
twice).

4. GEOMETRIC HYPOTHESES

Henceforth, we restrict attention to competitive Lotka-Volterra systems with a
unique fixed point p € int R%. We exploit the split Liapunov function by choosing
H to be T,,X, the tangent hyperplane to the carrying simplex ¥ at p. In Lemma 4.1
we use the balanced structure of ¥ to show that the split Liapunov function vanishes
on JR%. In Theorem 4.3 we deduce the global dynamics of a competitive Lotka-
Volterra system whose carrying simplex lies to one side of T),X. We then discuss the
relationship between the convexity of 3, the edges of ¥, and the dynamics on X.
In Section 5 we give algebraic conditions at p from which the position of ¥ relative
to H can be deduced, so that Theorem 4.3 can be applied. In Section 6 we give an
algorithm for computing these algebraic conditions.
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LOCAL TO GLOBAL BEHAVIOR IN LOTKA-VOLTERRA SYSTEMS 719

X3

X1

FIGURE 4. In the figure on the left, ¥ and T,¥ lie between the
nullclines, and so h lies in the convex hull K of the AT. The figure

on the right shows ¥ and H = T,,X for a three-dimensional example
in which ¥\ p lies in Hy.

Lemma 4.1. Given the competitive system (1.1) with a unique fized point p €
intR7%, let H=T,¥ and define the split Liapunov function V, corresponding to H,
as in Theorem 3.1. Then V extends to R}, and V =0 on R} .

Proof. The interior of the carrying simplex, int ¥, is invariant and strongly bal-
anced, by Theorem 2.1. So the vector field Z is neither strictly positive nor strictly
negative on ¥\ {p}. Hence ¥ is “trapped between” the nullclines of the system, in
the sense that no point of ¥\ {p} lies above all the nullclines (where & is negative),
nor below all the nullclines (where Z is positive). Therefore, the tangent hyper-
plane H = T, ¥ is also trapped between the nullclines, and the normal vector h is
contained in the closed convex hull K of the rays containing the normal vectors AT
to the nullclines N;. See Figure 4.

Next we show that h ¢ OK, the boundary of this convex hull. Suppose (for
contradiction) that h lies in some face of K, say the face opposite AT. In other
words, h lies in the convex hull of AT, ..., AT, Then H contains the intersection
NN ...N N, of the corresponding nullclines, on which z is parallel to the z;-axis.

Let R be a ray emanating from p in Non...N N,,. If § = By denotes the linear
approximation of system (1.1) at p, then By # 0 for y # 0, and the direction of By
is constant for all y € R\ {p}. Let u denote the unit vector in this direction. Then
u € H, because R C H, and H is invariant under the linear approximation.

Now for each z € R\ {p}, let u(z) denote the unit vector in the direction of the
full vector field  of system (1.1). Then, by the definition of the derivative map,
u(z) — u as ¢ — p along R. But u(z) is parallel to the zi-axis for all z € R\ {p};
so the limit v is also parallel to the z;-axis. Therefore, u is transverse to H since H
is trapped between the nullclines, contradicting the fact that w € H. Thus h ¢ 0K,
and hence h € int K.
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720 E. C. ZEEMAN AND M. L. ZEEMAN

So
h=Y aAl, wherea; >0, Yi=1,...,n,
i=1

and thus, if z; = 0 for any 1,

O

Definition 4.2. Given the competitive system (1.1) with a unique fixed point
p € int R}, we call p a global attractor if p is an attractor with int R? as its basin
of attraction. We call p a global repellor if, on T, p is a repellor with int T as its
basin of repulsion. (Note that in the latter case, p is a saddle in R", by Theorem
2.1.)

Figures 2 and 3 show examples in Ri for which p is globally attracting and
globally repelling respectively. In Figure 4, on the right, we illustrate that the
carrying simplex of Figure 3 lies above H, in H,.

Theorem 4.3 (Geometric Theorem). Given the competitive system (1.1) with a
unique fived point p € int RY, let H = T,5. If £\ {p} lies below H, then p is a
global attractor. If ¥\ {p} lies above H, then p is a global repellor.

Proof. Let V be the split Liapunov function corresponding to H, as defined in
Theorem 3.1. Then V(p) > 0, and V = 0 on % by Lemma 4.1. If £\ {p} lies
below H, then V is strictly increasing along orbits on X \ {p}. Therefore, there is
no recurrence on X \ {p}. Moreover, if z € int £, then V(z) > 0; so w(x) N 9L = §.
Thus w(zx) is a subset of the fixed points in int £. But p is the only fixed point
in int¥, and so p attracts all orbits in int £. Hence p is globally attracting by
Theorem 2.1.

Now consider the case when £\ {p} lies above H. Then V is strictly decreasing
along orbits on X\ {p}. So in backwards time, V is strictly increasing along orbits
on ¥\ {p}. Thus, as in the previous case, p attracts all orbits in int ¥ in backwards
time. Therefore in forwards time, P is globally repelling. d

In Corollary 4.5, we ensure that £\ {p} lies to one side of its own tangent plane
at p by requiring that ¥ is either convex or concave. We use the following definition
of convexity or concavity of the carrying simplex. Let £, and £_ denote the two
components of R” \ £ that lie above and below X respectively (so 0 € X_).

Definition 4.4. We call ¥ convex, flat, or concave if for all z,y € ¥, the interior
of the line segment zy lies in ¥_, ¥, or &, respectively.

Corollary 4.5. Given the competitive system (1.1) with a unique fired point p €
intR%, if £ is convex (concave), then p is a global attractor (repellor).

Proof. Consider the case when X is convex. Let H = T,Z, let z € X\ p, and
suppose that £ € XN H,. Then the segment zp is transversal to H at p, and int zp
meets 2, contradicting the hypothesis that X is convex. Therefore ¥ ¢ HU H_,
so X C H_,and intzp C £_ C H_. Thus x € H_, so X\ p lies below H, and
hence p is a global attractor by Theorem 4.3.

Similarly, when ¥ is concave, p is a global repellor. d
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LOCAL TO GLOBAL BEHAVIOR IN LOTKA-VOLTERRA SYSTEMS 721

Define an edge of 3 to be a one-dimensional face in the boundary of 3. In [19] we
prove that each edge of ¥ is generically either convex or concave, or exceptionally
flat. It is then easy to see that if there is a fixed point g in the interior of an edge
o, then o is convex (concave) if and only if ¢ attracts (repels) along o.

Van den Driessche and Zeeman show in [16] that for a three-dimensional compet-
itive Lotka-Volterra system, if every species can resist invasion at carrying capacity,
then all but one of the species will be driven to extinction, while if no species can
resist invasion, there will be stable coexistence of all the species. In the case when
all the species can resist invasion, each axial fixed point is an attractor. So each
edge of ¥ contains a fixed point repelling along that edge. Thus each edge of &
is concave (Figure 3). Similarly, when no species can resist invasion, each edge of
¥ is convex (Figure 2). The following questions remain open for three-dimensional
competitive Lotka-Volterra systems that have a fixed point p € int Ri:

Question 4.6. If all the edges of ¥ are convex (concave), is 3 convex (concave)?

Question 4.7. If all the edges of ¥ are convex (concave), does ¥ lie to one side of
T,57?

In the case that there is no fixed point in int Ri, the answer to Question 4.6 is
negative, as shown in [20, Counterexample 6.1]. The answer to both questions is
negative in dimension four, as shown by the example of Hofbauer described in [16,
Addendum].

In [20] we prove that for a competitive Lotka-Volterra system of dimension
greater than two, the edges of ¥ generically determine ¥. In particular, if all
the edges are flat, then ¥ is flat. Plank proves in [15] that when X is flat, system
(1.1) admits a Hamiltonian structure on ¥. In [14] he classifies three-dimensional
Lotka-Volterra systems that admit a bi-Hamiltonian representation. As a special
case of these results, in Theorem 4.8 we use the split Liapunov function to show
that when the carrying simplex of a three-dimensional competitive Lotka-Volterra
system is flat, it is foliated by cycles.

Theorem 4.8. In a three-dimensional competitive Lotka-Volterra system with a
unique fired point p € int Ri, if ¥ is flat, then it is filled with concentric closed
orbits.

Proof. Let H =%, and let V be the corresponding split Liapunov function. Then
V =0 on ¥ and so orbits on ¥ lie on the level surfaces of V. But the latter cut
H = ¥ in concentric closed curves, which must therefore be the orbits (see Figure
5). Therefore, all orbits are closed except for the fixed point p and the boundary
o%. O

Remark 4.9. By a similar argument, if p has a neighborhood in ¥ that is flat, then
p has a neighborhood in ¥ that is filled with concentric closed periodic orbits.

Remark 4.10. In the special case of the circulant example of May and Leonard [9),

1 a 8 1
A= 8 1 a |, b=] 1},
a [ 1 1

when a + 3 = 2, the edges of ¥ are flat, ¥ is the standard unit simplex {z € R? :
1+ 2+ z3 = 1}, and V reduces to V = z1x223. So the split Liapunov function
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X3

X2

X1

FIGURE 5. In R3 the level surfaces of V cut H in concentric closed curves.

can be viewed as a generalization of the method of May and Leonard. By contrast,
when a + 3 # 2, neither the edges of ¥ nor ¥ are flat. Thus the numerical results
in [9] are misleading in that respect.

LaMar and Zeeman [7] have developed a program, CSimplez, as a module for
interactive use with Geomview [8] to visualize the carrying simplex, nullclines, tan-
gent plane at p, and orbits of a given three-dimensional competitive Lotka-Volterra
system. Figures 1-3 and 8-10 in this paper were created using Csimpler and Ge-
omuview.

5. ALGEBRAIC HYPOTHESES

In this section we continue to exploit the quadratic structure of system (1.1), to
give algebraic hypotheses from which the position of the carrying simplex ¥ relative
to T,X can be deduced, so that the Geometric Theorem can be applied.

As usual, consider the case when system (1.1) has a unique fixed point p € int R%,
let H denote T,%, and let k denote a strictly positive vector normal to H. Define
Q(z) = hT2, which is proportional to the component of & normal to H.

Lemma 5.1. Q is quadratic.

The proof of Lemma 5.1 is immediate, as @ is the composition of linear maps
(projection and scaling) with the quadratic map #. Despite its simplicity, this
lemma (originally introduced in {19]) is a powerful tool for linking algebraic and
geometric properties of system (1.1). We show in Theorem 5.3 that if Q is definite
on H, then ¥\ {p} lies to one side of H, and hence the Geometric Theorem can be
applied to deduce the global dynamics of system (1.1).
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First we prove a technical lemma about the local implications of the definiteness
of () near p by temporarily switching to local coordinates at p. We appeal to these
same local coordinates again in the proofs of Theorem 5.3 and Lemma 6.1.

Lemma 5.2. Given the competitive system (1.1) with ¢ unique fized point p €
int R™, let h be a strictly positive vector normal to H = TpE and let Q(z) = hTg.
If Q is positive (negative) definite on H, then 3 a neighborhood N of p such that if
z € N,z # p, and z lies on or below (above) H, then p & a(x).

Proof. Without loss of generality, assume h is a unit vector, so that Q(x) is simply
the component of £ normal to H. Consider the case when @ is positive definite
on H. The case when @D is negative definite on H is proved similarly. A short
computation shows that the linear approximation to system (1.1) at p is

&= —PAgz

where P is the diagonal matrix (diag p) with diagonal entries p;. The matrix PA
has strictly positive entries. So by the Perron-Frobenius theorem [6, Theorem
8.4.4], —P A has a simple negative eigenvalue —\ corresponding to a strictly positive
eigenvector v. The tangent space H to ¥ at p is transverse to v (since H is balanced),
contains all the other eigenvectors of —P A, and is invariant under —P A.

Now change to local coordinates 21, ..., 2, at p, with respect to a basis {6,. ..,
Bn—1,h} of R™, such that $1,...,08,—1 span H. So H has equation z, = 0, and
v has coordinates (vy,...,v,) where v, > 0. The linear approximation to system
(1.1) in the z coordinates is given by

z=Cz,

for some matrix C. Note that if z € H, then Cz € H by the invariance of H, and
that Cv = —Av. Hence C has the block form

o~(5 )

where D is (n—1)x (n—1), 0is 1x(n—1) and uis (n—1) x 1. Thus the component
of the linear approximation to system (1.1) in the h direction, normal to H, is

(5.1) Zn = —Azp.

The quadratic function @ is given by the component of the full Lotka-Volterra
system normal to H. Thus @ is obtained by adding suitable quadratic terms to
(5.1), and can be written as

Q(2) = 2n = —A2n + A(2) 2, + 1(2)
where A(2) is linear in 21, ..., 25, and II(2) is a quadratic form in 2y,...,2,—1. On
H, z, =0, and so Q(z) = I(z). By hypothesis, @ is positive definite on H, and
hence II is positive definite.
Now choose p, € > 0 such that if ||z|| < ¢, then [A(2)]| < A — i, and let B be the

ball in R™ given by B = {# € R" : ||2z|| < €}. For every z € B with 2, < 0 and
z # 0, we have

Zn = (A + A(2))zn + 11(2) > —pz, + 1(2) > 0,

and hence the z, component of the backwards orbit of z decreases until the orbit
crosses OB.
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Let S be the (n — 2)-sphere in H, center p, given by S = {z € H : ||z|| =
£}. By compactness of S, we can choose § > 0 such that for every z € S, the
backwards orbit of z crosses the plane z, = —é before it crosses B. Finally, we
flow S backwards to construct a neighborhood Nj of p in H U H_, from which all
backwards orbits leave, never to return. In fact, N is a tubular neighborhood of
Wen{z: -6 < z, <0} in HUH_, where W** denotes the one-dimensional strong
stable manifold of p. See Figure 6.

More precisely, for each v € [0,4) and each z € S, let

zy = the point where the backwards orbit of z meets the plane z, = —v,
S, = {zy:z€ 8}, s08, is an (n — 2)-sphere in the plane z, = —7,
D, = the open disc bounded by S, in the plane z, = —7,
Ns = |J D,
~€[0,8)

Now let N = Ns;U (BN Hy). Then if z € N and z lies on or below H, then
z € Ns. So the backwards orbit of z leaves N, stays in H_ since () is positive
definite on H, and hence never re-enters N. So p € a(z). a

FIGURE 6. The neighborhood N of p

Theorem 5.3 (Algebraic Theorem). Given the competitive system (1.1) with a
unique fized point p € int R, let h be a strictly positive vector normal to H = TpX.
and let Q(z) = hTi. If Q is positive (negative) definite on H, then p is a global
repellor (attractor).

Proof. The positive definite and negative definite cases are proved similarly. We
consider the case when @ is positive definite on H, as the need for the subtleties of
Lemma 5.2 are clearer in this case (when p is, in fact, the a-limit set of orbits on
%). We show by induction on the dimension of the faces of T, that each face lies
above H. For the final induction step, we invoke Lemma 5.2 and the split Liapunov
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LOCAL TO GLOBAL BEHAVIOR IN LOTKA-VOLTERRA SYSTEMS 725

function to show that ¥\ p lies above H. Thus p is globally repelling by Theorem
4.3.

First note that no fixed point in 9% can lie on H, since @ is positive on H except
at p. To begin the induction, recall that the vertices r; of ¥ (the 0-dimensional
faces) are the axial fixed points of system (1.1). Each r; attracts along the positive
x;-axis, which consists of r; together with two orbits: one running from 0 to r;,
the other running from oo to r;. Thus r; must lie above H; otherwise, @ would be
negative at the point where the z;-axis crosses H.

Now let 1 < k < n—1 and assume, for induction, that every face of £ of dimension
less than k lies above H. Let R**! denote a (k+1)-dimensional coordinate subspace
of R*; ©% = S NRAT the corresponding k-dimensional face of £; H* = H N R4
the corresponding k-dimensional face of H M R", and consider the restriction of
system (1.1) to RF*1.

We show that if there is a fixed point p* € int =¥, then p* lies above H*. By the
Perron-Frobenius theorem and the (backwards time) monotonicity of system (1.1),
pk has a one-dimensional, totally ordered, strong stable manifold, W**, that crosses
HF¥ exactly once. It consists of p* together with two orbits: one running from 0 to
p*, the other running from oo to p*. See Figure 7. Thus p* must lie above H¥;
otherwise, Q would be negative where W** crosses H*. So all the fixed points in
% lie above H*.

X3

WSS

X

FIGURE 7. If  is positive definite on H, then every fixed point
p* € ORT lies above H.

Now we show that ¥ does not meet H*, and hence lies above H*. Suppose, for
contradiction, that £¥ N H* £ @, and let M = £% N H*. If x € M, then the orbit
through z lies in £*, and is transverse to H* since @ is positive at z. Therefore,
¥ is transverse to H* at all points of M, and so M is a (k — 1)-manifold. By the
induction hypothesis, 95 lies above H*. So M N 0% = @ and thus M is without
boundary. Therefore M separates ©F into open components, at least one of which
lies in H*. Let C be such a component. Then C (the closure of C) is compact, and
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the flow on AC is outward from C along £*, since 9C ¢ M C H*, and Q is positive
on H*. Thus, if z € C, then a(z) C C and a(z) is compact and connected. We
change temporarily to the local coordinates at p introduced in the proof of Lemma
5.2, where z,, represents the component of z in the positive direction normal to H.
Let z € a(z). Then z, < 0 since a(z) C C C H_ , and by the compactness of

a(z),

1 (T
(5.2) THIPoo f/o zp(t)dt < 0.
But the forward time average of a permanent orbit of an autonomous Lotka-Volterra
system is a fixed point of the system [4, Theorem 5.2.3]. So by time reversal, and
inequality (5.2), there is a fixed point of system (1.1) in H*. This contradicts the
fact that all the fixed points in £* lie above H*. Hence ©* N H* = @, and every
k-dimensional face of ¥ lies above H.

So far we have proved that 0% lies above H. We now use Lemma 5.2 and the
split Liapunov function to deduce that 3\ {p} lies above H. As before, we define
M =X H. This time M # § since p € M. Moreover, ¥ is not transverse to H
at p, since H = T,X. We claim that M = {p}. Suppose, for contradiction, that
M # {p}. For each z € M, if z # p, then ¥ is transverse to H at z, since Q is
positive at z. Therefore, M is an (n — 2)-manifold, except possibly at p. Let C be
a component of ¥\ M in H_. Then p may be an isolated point in the interior of C,
or a singular point on 0C. The flow on JC is outwards from C at all points of &C
except possibly at p, where it is fixed. Thus if z € C \ {p}, then a{z} C C U {p}.
By Lemma 5.2, p ¢ o{z} and so a{z} C C\ {p}. But C\ {p} contains no fixed
points, because it lies in H_. Hence a{z} contains a nontrivial recurrent orbit in
H_, contradicting the fact that V' is monotone along orbits in H_. Hence M = {p},
and ¥\ {p} lies entirely above H.

Now we apply Theorem 4.3 to conclude that p is a global repellor. ]

Remark 5.4. An ecological interpretation of Theorem 5.3 is that if Q is positive
definite, so that ¥ lies above H, then for almost every positive initial condition,
at least one of the species is driven to extinction. If Q is negative definite, so
that ¥ lies below H, then any strictly positive initial condition will lead to stable
coexistence of all the species at p.

Remark 5.5. Note that the time-averaging argument used in the proof of Theorem
5.3 could also have been used to prove Theorem 4.3. We chose to introduce the
split Liapunov function instead, to emphasize the underlying geometry.

6. COMPUTATIONAL HYPOTHESES

In this section we exploit the linear and quadratic structures of system (1.1)
to develop an algorithm for checking the definiteness of Q|g. In Theorem 6.7, we
replace the algebraic hypotheses of Theorem 5.3 with this algorithm, so that testing
the hypotheses becomes a simple matter of computation.

As usual, we assume that system (1.1) has a unique fixed point p € int R" given
by p = A"1b, we let H = T,%, and we let h be a strictly positive vector normal to
H. For vectors h,p, z,y we use H, P, X, Y to denote the diagonal matrices diag(h),
diag(p), diag(z), diag(y) with diagonal entries h,,p;, z;, ¥; respectively. Then we

This content downloaded from 139.140.208.115 on Tue, 23 Sep 2014 10:13:24 AM
All use subject to JSTOR Terms and Conditions




LOCAL TO GLOBAL BEHAVIOR IN LOTKA-VOLTERRA SYSTEMS 727

rewrite system (1.1) as
(6.1) t=XA(p— x).

Recall from the proof of Lemma 5.2, that the linear approximation to system
(1.1) at p is given by £ = —P Az, and that by the Perron-Frobenius theorem, —PA
has a simple negative eigenvalue —\ with strictly positive eigenvector v. The follow-

ing lemma slightly generalizes [6, Theorem 1.4.7], which states that left and right
eigenvectors corresponding to distinct eigenvalues of a matrix are perpendicular.

Lemma 6.1. hT is a left eigenvector of —PA corresponding to eigenvalue —\.

Proof. We prove Lemma 6.1 by dipping back into the local coordinates z1,...,2,
with respect to the basis {#1,..., 8,1, h} introduced in the proof of Lemma 5.2.
Recall that in these coordinates, the linear approximation to system (1.1) at p is
given by 2 = Cz, where C has the block form

~(% 3)

Thus

hTC:(O,---,0,1)< DO _K ) =(0,...,0,-X) = —AnT.
Therefore, hT is a left eigenvector of C, and hence of —PA, corresponding to
eigenvalue —A. O

Lemma 6.1 provides an algorithm for finding a positive vector A normal to H, by
computing a positive left eigenvector of —PA. Next we compute the corresponding
quadratic function Q = kT4 by working in new local coordinates at p given by
y=1z—p.

In these coordinates,

y = 7
= XA(p - z), by equation (6.1)
= (P+Y)A(-y)
= —PAy— YAy
So
Q) = h'y
= —hTPAy—hTYAy
= ATy —yTHAy

since hT is a left eigenvector of —PA corresponding to eigenvalue —\, and hTY =
yTH by the diagonal structure of H and Y.
Now choose y € H. Then hTy =0. So on H,

Qly) = —y (HAy
—yT (HA)®y
where M® denotes the symmetric matrix
(6.2) MS=L(M+MT)

obtained from the real n x n matrix M. Therefore, @ is given by the quadratic
form with matrix —(HA)% on H, and we have proved:
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Lemma 6.2. Q is positive (negative) definite on H if and only if (HA)S is negative
(positive) definite on H.

Lemma 6.2 provides an algorithm for computing @ on H. To test the definiteness

of a quadratic form M on H, we reduce M as follows. Choose a basis {81,...,8,-1}
n—1

for H. Let y € H and write y = Z yif;. Then
=1
n-—1
yTMy = wy; (8T MB;).

ij=1
Definition 6.3. Given an n x n matrix M and basis {1, ..., 8,1} for H, let M %
denote the (n—1) x (n—1) reduced matrix given by M¥ = (mfl) = (8T M3;), i,5 =
1,...,n—1.

Example 6.4. If h = (1,...,1)7, then H is spanned by {8 = (1,-1,0,...,0)%,
B2 =(0,1,-1,0,...,0)T,... 8,1 = (0,...,0,1,—1)T}, and a short computation
shows that

6.3 mE = m,; 4 M1, 41 — Mip1 — My 41 forall 1 <45 <n—1.
17 J »J 2»J 2J
Thus
(6.4) M® = My, + My — My — My,

where M;; denotes the (n — 1) x (n — 1) submatrix of M obtained by deleting row
1 and column j from M.

Note that if M is symmetric, then MFE is also symmetric, and the next lemma
follows immediately from a standard characterization of definite matrices. See [6,
Section 7.2] for details.

Lemma 6.5. A quadratic form with symmetric n x n matriz M is positive (nega-
tive) definite on H if and only if all the eigenvalues of M® are positive (negative).

The definiteness of M on H is independent of the choice of basis {f1,...,n-1}
for H. In the following lemma, we fix that choice by making a diagonal change of
coordinates with respect to which the basis and reduction equation (6.3) given in
Example 6.4 can be used.

Lemma 6.6. Q is positive (negative) definite on H if and only if all the eigenvalues
of (AH~Y)SE are negative (positive), where (AH 1) % is given by equations (6.2)
and (6.4).

Proof. Given system (6.1), consider the change of coordinates
¥ =Dz

where D is a diagonal matrix with strictly positive diagonal entries. It is easy to
verify that
(6.5) T=XAp -1
where X’ = diag(z’), A’ = AD"! and p’ = Dp.

System (6.5) has carrying simplex ¥’ with tangent hyperplane H’' at p/, and H’
has normal vector h’ = D~'h. As in Lemma 6.1, K'7 is a left Perron-Frobenius
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eigenvector of P'A’ corresponding to eigenvalue X, and X = X since P'A’ =
DPAD™!. On H’ the quadratic form h'7#’ is given by

Q/(y/) _ _y/T(H/A/)y/
where y' = 2’ — p’' = Dy and H’ = diag(h’); so H' = D~1H. Therefore,
Q@) = —(Dy)"(D"'HAD ')(Dy)
= —yTHAy
= Q)

Thus @ is invariant under the diagonal change of coordinates z’ = Dz.
Now let D = H and consider the coordinate change

z' = Hz.
Then A= AH™!, ¥ =H'h=(1,...,1)T, H' =1 and
Q) = Q)
~y (M A

= ¥ (An Ty

= —yT(AH Sy,
Thus Q is positive (negative) definite on H if and only if (AH )% is negative (pos-
itive) definite on H'. But &’ = (1,...,1)T. So we can choose a basis {3],...,8,_1}

for H' as in Example 6.4 and, putting M = (AH )%, use the reduction equation
(6.4) to compute (AH~1)SE. The result now follows from Lemma 6.5. O

The Computational Theorem below follows immediately from Lemma 6.6 and
the Algebraic Theorem (Theorem 5.3).

Theorem 6.7 (Computational Theorem). Given the competitive system (1.1) with
a unique fized point p = A~'b € int R%, let P = diag(p), let hT be a strictly positive
left eigenvector of PA and let H = diag(h). Define (AH1)S® by equations (6.2)
and (6.4). If all the eigenvalues of (AH™1)S® are negative (positive), then p is a
global repellor (attractor).

7. EXAMPLES

The computational hypotheses derived in Section 6 are reminiscent of the clas-
sical Volterra-Liapunov Stability Theorem stated below. See [4, Section 15.3] for
more details and a proof.

Theorem 7.1 (Volterra-Liapunov Theorem). If there ezists a diagonal matriz D
with positive diagonal entries such that (DA)S is positive definite, then system (1.1)
has a globally stable fized point.

The two theorems are clearly different. The Volterra-Liapunov Theorem has
the advantage that it does not require system (1.1) to be competitive, the result
is independent of the choice of b, and the globally attracting fixed point need not
be in int R}. The Computational Theorem has the advantage that it can also be
applied to the case when p is globally repelling. In the case when system (1.1) is
competitive and has an attracting fixed point p € int R, the differences are more
subtle, and are illustrated by Examples 7.4 and 7.5 below. The Volterra-Liapunov
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Theorem has the advantage that we are free to choose among diagonal matrices D,
while the Computational Theorem has the advantage that we only need definiteness
in n — 1 dimensions. Example 7.4 satisfies the hypotheses of the Computational
Theorem, but not those of the Volterra-Liapunov Theorem. By contrast, Example
7.5 satisfies the hypotheses of the Volterra-Liapunov Theorem, but not those of the
Computational Theorem. Example 7.6 does not satisfy the hypotheses of either
theorem, but p is locally attracting, and numerical simulations suggest that p is
also globally attracting.
We will need the following lemmas:

Lemma 7.2. For a real 2 x 2 matriz M, detM® < detM.

Proof. Let
a b
M= ( o b ) .

Then ) ( )

S _ a 5 b +c

M ( %(b +c) d ) )
So
4detM — 4detM® = 4dad — 4bc —4ad + (b+c)?
(b—c)?
> 0.

Therefore, detM® < detM. O

Lemma 7.3. If a real 3 x 3 matriz M has a negative 2 x 2 principal minor, then
there is no diagonal matriz D, with positive diagonal entries, such that (DM)S is
positive definite.

Proof. As usual, let M;; denote the submatrix of M obtained by deleting row 7 and
column j. To fix ideas, assume that detM3z3 < 0. Let

d 0 0
D= 0 do 0 |}, withdy,da,d3>0.
0 0 ds
Then
det((DM)%)33 = det((DM)s3)°

< det(DM)s3, by Lemma 7.2
= det(Ds3M33)
= dydsdetMs;
< 0.

This contradicts the definiteness of (DM)S. (See [6, Corollary 7.1.5] for details.) O

Example 7.4. Let
& =X(b— Az)

8 3 4 1 1
b= 15}, A= 45 6 |, sop=alb=| 1].
8 41 3 1

where
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