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Viruses and Geometry: Group, Graph and Tiling Theory Open
Up Novel Avenues for Anti-Viral Therapy

Reidun Twarock

Viruses are responsible for a wide range of devastating illnesses in humans, animals and
plants, yet options for treatment or prevention are limited. This is in part due to the
occurrence of escape mutants that exhibit changes in the structures of the drug targets.
New insights into evolutionary conserved features and constraints on virus structure are
therefore key for the development of novel, more stable forms of anti-viral therapy. The area
of Mathematical Virology, that focuses on the development and applications of mathematical
tools to tackle open questions in virology, provides new opportunities to address this. Based
on our unique interdisciplinary approach in which mathematical techniques from group, graph,
tiling and lattice theory play key roles, we demonstrated that virus structure is much more
constrained than previously appreciated. In particular, we identified structural constraints
acting simultaneously at the level of the viral protein containers that encapsulate the viral
genomes, and at the level of the packaged genomes. These new insights into virus structure
have consequences for how viruses form, evolve and infect their hosts, and we developed
mathematical techniques and models to quantify this. We derived new ways of characterizing
genome organization within the viral capsids via graph theory, and used this to elucidate
the mechanisms underpinning virus assembly. This resulted in the identification of previously
unappreciated cooperative roles of single-stranded RNA genomes in virus assembly, and led
to the discovery of a new anti-viral strategy against single-stranded RNA viruses, a major
group of viral pathogens including HIV and Hepatitis C, in collaboration with experimental
collaborators at the Universities of Leeds and Helsinki.

The following provides a summary of the key mathematical results and a discussion of their
implications for our understanding of viruses and anti-viral therapy.
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Figure 1. Overview of a range of mathematical tools for the modeling of virus structure: (a)
Viral capsids have the characteristic 5-, 3- and 2-fold symmetry axes of icosahedral symmetry;

(b) Viral Tiling theory models capsid structure in terms of tessellations indicating the positions
and relative orientations of the capsid proteins; (c) point arrays representing affine extensions of

icosahedral symmetry provide 3D structural constraints on the organization of material in a
virus; and (d) a Hamiltonian path (yellow) modeling genome organization in proximity to

capsid.

1. Affine extensions of noncrystallographic Coxeter groups and virus geometry

Protein containers encapsulating viral genomes are salient features of virus architecture.
In most viruses, these containers are organized with icosahedral symmetry (cf. Fig. 1a) for
reasons of genetic economy, and group theory can therefore be used to better understand
virus geometry. We developed affine extensions of icosahedral symmetry to derive predictive
information on the organization of viruses at different radial levels [28,32,35,45], revealing a
previously unappreciated scaling principle in the overall organization of viral particles [14]
(cf. Fig.1c). Since icosahedral symmetry is non-crystallographic in three dimensions, i.e. is not
compatible with periodic lattices, standard techniques for affine extensions do not apply in this
case. We therefore developed a new framework for the construction of such affine extensions
in the context of non-crystallographic Coxeter groups [3,8,16]. We also demonstrated that
these mathematical structures, originally developed for applications in virology, can account
for the atomic positions in nested fullerenes, carbon cage structures called carbon onions [7],
demonstrating that they are more widely applicable in science.

2. Viral Tiling Theory in virology and bio-nanotechnology

The affine extended groups are by construction related to aperiodic tilings such as the Penrose
tiling. We developed Viral Tiling theory ([27,36-44], see also Fighting viruses with mathematics,
a case study by the Institute of Mathematics and its Applications) to model virus architecture
via spherical tilings (cf. Fig. 1b). These tilings generalize the triangulations used in Caspar-
Klug theory and indicate the relative positions of the proteins in viral capsids. Viral Tiling
theory solved a long-standing open problem concerning the structures of the cancer-causing
papillomaviridae [44], and also delivered models for tubular malformations that can arise during
self-assembly of the major capsid protein of these viruses [37]. We recently further developed
our tiling approach to make it applicable to broader classes of protein containers, including
protein nanoparticles used in vaccine design (the SAPN system) [4]. Our approach resulted in
a classification of all possible structural blueprints consistent with the self-assembly properties
of the SAPN building blocks. In combination with information from mass spectrometry on the
approximate numbers of constituent building blocks in each nanoparticle, this allowed us to
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identify the surface structures of the nanoparticles conclusively, which would not have been
possible via experiment alone.

3. Lattice Transitions provide insights into structural transitions important for infection

A significant number of viruses must undergo structural rearrangements of their protein
lattices in order to become infectious. Such maturation events are transient, and therefore
difficult to monitor experimentally. We have developed a new mathematical framework to
model such transitions based on our description of virus structure in terms of affine extended
symmetry groups and surface lattices. Our approach uses the constraints encoded by the
affine extensions of the icosahedral group as descriptors of capsid geometry, and exploits
their relation with bases of six-dimensional crystallographic lattices to model the transition
paths via projection of lattice transitions in six dimensions [5,17]. Since the descriptors derived
from affine extended symmetry are by construction related to the vertex sets of tilings, this
approach can also be used to model quasi-lattice transitions [18]. In order to better understand
the biophysical aspects of capsid transitions, we also used an energy function to capture the
interplay of different energetic contributions and describe capsid transitions in the context of
a dynamical systems approach [15]. This work provides insights into the roles of asymmetric
viral components in the initiation of the capsid transition, and characterizes the consequences
of the resulting symmetry breaking for the expansive motion of the capsid.

4. Novel applications of graph theory result in a paradigm shift in our understanding of
virus assembly

The assembly of viral protein containers from their component parts is a vital step in a
viral life cycle. For decades, this process had been thought of as predominantly driven by
protein-protein interactions, with the viral genomes at best playing minor roles via nonspecific,
electrostatic interactions. Through the use of graph theory to describe the organization of
the viral genomes within the capsids (see Fig. 1d), we were able to demonstrate that, by
contrast, the viral genomes play important cooperative roles in virus assembly [2,12,13,20,23-
26,31]. In particular, we used the concept of Hamiltonian path to formulate constraints on
the organization of the packaged genomes in single-stranded RNA viruses. In combination
with a novel bioinformatics approach developed by us, this revealed the existence of multiple
dispersed sequence patterns/ secondary structure elements in the genomes of these viruses that
specifically interact with viral capsid proteins to promote capsid formation [10,12,13,22]. We
subsequently extended this work to include a number of important Human and plant pathogens,
including Hepatitis B, C and HIV [46]. We moreover developed models for virus assembly
to elucidate the mechanism by which these multiple dispersed contacts confer efficiency
and fidelity to capsid assembly [11]. For this we used the concept of Hamiltonian paths to
quantify how viruses efficiently navigate the complex network of assembly intermediates, hence
effectively solving a virus assembly equivalent of the Levinthals Paradox in protein folding [6].

5. New mathematical models for virus assembly underpin the development of a novel
anti-viral therapy

Our assembly models are the first that take the cooperative roles of multiple dispersed
packaging signals into account [6,11], and allow us to better understand the mechanisms
underpinning packaging signal mediated assembly [1]. The models show that the importance
of packaging signals in virus assembly can only be fully appreciated, if specific features of an
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in vivo infection (such as the gradual build up of capsid protein, called the protein ramp)
are factored into the analysis, perhaps explaining why the existence and crucial roles of the
packaging signals had so long been overlooked. They also provide an in silico testing ground
to probe the effects of anti-viral strategies targeting specific groups of packaging signals. The
results show that such novel forms of anti-viral intervention can reduce viral load by delaying
assembly and triggering misencapsidation of cellular RNAs. Moreover, an analysis of packaging
signal motifs and positions across different viral strains, enabled by our novel graph theory
based analysis techniques, revealed conserved features that lend themselves as drug targets for
more stable anti-viral therapy [46].
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