LMS Undergraduate Summer School 2016

The many faces of polyhedra

1. PICK’S THEOREM

Let £ =Z? C R? be integer lattice, P be polygon with vertices in £ (integral polygon)
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FIGURE 1. An example of integral polygon

Let I and B be the number of lattice points in the interior of P and on its boundary respectively. In the example
shown above I =4, B =12.
Pick’s theorem. For any integral polygon P its area A can be given by Pick’s formula

B
(1) A=T43 1.

In particular, in our example A =4 + % — 1 =9, which can be checked directly.

The following example (due to Reeve) shows that no such formula can be found for polyhedra. Consider the
tetrahedron Ty, with vertices (0,0,0),(1,0,0),(0,1,0),(1,1,h), h € Z (Reeve’s tetrahedron, see Fig. 2).

FIGURE 2. Reeve's tetrahedron Ty

It is easy to see that Ty, has no interior lattice points and 4 lattice points on the boundary, but its volume is
Vol(Tn) = h/e6.



2. EHRHART THEORY

L%t P C RY be an integral convex polytope, which can be defined as the convex hull of its vertices v1,...,vN €
/A
P={x1vi +...xnVN, X1 +...xn = 1, %1 > O}
For d =2 and d = 3 we have convex polygon and convex polyhedron respectively.
Define
Lp(t) :=[tP N ZY|,
which is the number of lattice points in the scaled polytope tP, t € Z.

Ehrhart theorem. Lp(t) is a polynomial in t of degree d with rational coefficients and with highest coefficient
being volume of P:
Lp(t) = Vol(P)td + - + 1.
Lp(t) is called Ehrhart polynomial.
Define also Ehrhart series by

Ehrp(z) = ) Lp(t)zh.
t€Zs0
Example 1. Let (4 be the d-dimensional unit cube:
Oa ={(x1,...,xa) : 0 <x; < 1} =1[0,1]4.
Then t0gq = [0,t]4 and Ehrhart polynomial is
Lo, (t) = (t+1)9.
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The Ehrhart series is

t>0 j>1
In particular,
1 1
E = — = —
hro, (2) dz1—z (1=2)2°
1/ d\? 1 z41
Eh =—|z— =
T, (2) z <Zdz> 1—z (1-2)3

1/ a\’ 1 2244241
Ehro, (2) = 7 (Zdz> 11—z (-2
1<Zd>4 1 2412 +11z+]
z\dz) 1—z (1—2z)5
The coefficients of the numerators are known as Eulerian numbers A(d, k), which count the permutations of
{1,2,...,d} with k ascents.

Ehrp, (z) =

Example 2. Let A4 be the standard d-dimensional simplex:

Ag ={(x1y...,xa) ix1 +---+xq <1, x4 > 0L
Then

tAq ={(x1y...yxa) :x1+ - +xa <t, xg >0}
The Ehrhart polynomial is

La,(t) = (d;rt> _ (t+d)(t—|—dd—!1)...(t+])

d+t 1
Ehra,(z) = ( >zt = —.
A é d (1—2z)d

and the Ehrhart series is

Example 3. For integral polygon P

B
Lp(t) = At? + St+1,

where A is the area and B the number of boundary points of P.

The Ehrhart series is
A-B4+122+(A+2-2)z4+1

Ehrp(z) = 027




3. EHRHART-MACDONALD RECIPROCITY

Let P be an integral convex polytope and define interior Ehrhart polynomial Lpo(t) as the number of interior
lattice points in tP.

There is a remarkable Ehrhart-Macdonald reciprocity: for any convex integral polytope of dimension d

b)) Lpo(t) = (—1)9Lp(—t),

3) Ehrpo(z) = (—nd“Ehrp(%)

where the latter is understood as equality of rational functions (but not formal series).
Example. For unit cube we have
Log (t) = (t=1)4 = (=) (=t + D¢ = (=)L, (-t).
For a polygon P
Lpo(t) = At? — %t +1=1Lp(—t).

4. EXERCISES-1

1. Prove Pick’s formula for any integral triangle. Hint: see Fig.3.

FIGURE 3. Embedding of an integral triangle into a rectangle

2. Find Ehrhart polynomial and Ehrhart series for the standard octahedron O with the vertices (+1,0,0), (0,+£1,0), (0,0, £1)
and pyramid P (see Figure 4).
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FIGURE 4. Standard octahedron O and pyramid P

3. Check the Ehrhart-Macdonald reciprocity for the standard d-simplex Ag.

4. Find the Ehrhart polynomials Lt, (t) for Reeve’s tetrahedron and show that its coefficients could be negative.
Use the Ehrhart-Macdonald reciprocity to find LT}? (t).



5. GENERATING FUNCTIONS OF SETS

Let S C RY be a subset. The generating function (or integer-point transform) of S is defined by
os(z) == Z z™,
meSnza
where m = (my,...,mq) € Z4, z = (z1,...,2zq4) € C% and

m

— ., ma
Z5 =2z ...Zg o

Example. For d =1 and S = [0, +00) we have

for S = [a, b, a,b € Z we have
os(z) = Z zZm =
a<m<b
A cone K C RY is a set of the form
K={v+Aw;+ - +Auwn : Ay >0},
v is called apex and Wy are generators of the cone K. The cone is called rational if wy, € Z% forallk =1,...,N.

We will consider only d-dimensional cones (or, d-cones) with wq,...,wy spanning the whole R%. The d-cone
K is simplicial if N = d.

For simplicial cones the generating functions can be computed effectively. We demonstrate this in 2 dimensions.
Let v =(0,0),wy = (1,1),w2 = (=2, 3), see the corresponding cone K on Fig.5. The half-open set
M:={Aw; +Aw:0< AN < 1}

is called the fundamental parallelogram.

FIGURE 5. The cone K with its fundamental parallelogram TT

The generating function of the lattice generated by wi and w; has the form
1 1
o(z) = Zm1w1+m2wz — — .
@)= 2 T2 -2 (-zz)(1-7 )

mezi,
Adding the contribution from the lattices shifted by the integer points inside TT we have the full generating function
M4 zp+23+z7 2R 422

ok(z) = (1 —z122)(1 — 27%23)

Note that the numerator is simply the generating function of TT:

om(z) =142y + 25 +27'2% + 2,123,

For a general rational simplicial d-cone K ={A1wq 4+ --- + Agwgq : Ay > 0}, we have

_ 0-v+ﬂ(z)
“) VR T e (1= v

where TT is half-open fundamental parallelepiped

M={Awi 4+ +Agwaq:0< Aq,..,Aq < Th



6. CONE OF P AND PROOF OF EHRHART’S THEOREM

Let us embed polytope P C R with vertices v1,...,vn € R into R4+ by adding xq41 = 1:
wy = (vi, 1),...,wn = (v, 1)
and consider the cone
cone(P) = {Awq +---+Agwq : Ay > 0L

The original P can be recovered from the cone of P by cutting it with the hyperplane xq+1 = 1, while its scaled
versions tP are intersections with xq+1 =t (see Figure 5).
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FIGURE 6. The cone of P with the dilates of P

Now the key observation is that

Gcone(P)(1)"'»1>Zd+1) =1 +ZO-tP“)---)1)ZE1+1 =1 +Z|thZd|ZE+1 =1 +ZI—P(t)Z:L:H—1>

t>1 t>1 t>1
30)

(5) 0-tzone(P)(])---)])Z) =1 +ZLP(t)Zt = Ehrp(z).

t>1

Now we can prove Ehrhart’s theorem as follows.

First triangulate P into simplices to reduces the claim to the case when P is a simplex. From formula (4) we can
deduce that

on(1,...,1,2)
Gcone(P)(]a--->]aZ) = W
with o (1,...,1,2) being polynomial in z of degree at most d. Now the theorem follows from the claim that the
Taylor coefficients ay of a rational function
p(z) N X
(1—z)d+1 — Z ez
k>0

with p(z) polynomial of degree d such that p(1) # 0, are polynomial in k of degree d.
From the theory of Riemann integral we have
INPNZY| Lp(N)

L PORZE _
ORI = TN T TN T TN T

where
Lp(k) =cak® +...co.
Note that we know also co = 1, but other coefficients of Ehrhart polynomial are a bit of mystery, and can be
even negative as we have seen in Reeve's case.
It is interesting that for the numerator of the Ehrhart series all the coefficients are non-negative:
Stanley’s non-negativity theorem. For an integral convex polytope P with

hazd+hg 1247+ 4+h
Ehrp(z) = =5 ((111_Z)d+1 °

we have hg,hy,...,hqg > 0.

For a simplex P this follows from the interpretation of hy as the number of integer points in the fundamental
parallelepiped TT with x4.4+1 = k (see formula (4)).



7. TANGENT CONES AND BRION’S THEOREM
For any vertex v of a convex polytope P one can naturally define tangent cone as
Ky:={v+Ax—v):x € A€ R0}
(see Fig. 7).

FIGURE 7. Tangent cones in dimension 2 and 1

Brion’s theorem. For any integral convex polytope P we have the identity of rational functions

(6) op(z) = > ok, (2)

v a vertex of P

Example. For P = [a, b] we have

os(z) = Y Zm:za1__zz :]zﬂ ]_1/ =) 2"+ ) z™=ox,(2) + ok, (2).

m>a m<b

The general proof is based on a curious identity

ZZmEO,

mezZ
where the left hand side is understood as the sum of two rational functions:

a—1 a a
Zz Zz —|—Zz —i—]Z_]/Z 1Z_Z+ZZ_1EO.

mez m>a m<a

Note that this identity does not make much sense in analysis since two last series never converge simultaneously!

As a corollary we have one more proof that Lp(t) is polynomial. Indeed, it is enough to prove it for simplices A,
for which we have

La(t) = lim o¢a(z) = lim E ok, (z) = lim E z'voo (z),
z—1 z—1 z—1 v
v a vertex of P v a vertex of P

where K¢ is the cone K, shifted to 0. We know that Oko(2) is a rational function with the denominator vanishing
at z =1 (see formula (4)), so the limit z — 1 should be computed using the L'Hépital’s rule. It is clear that the
result will polynomial in t.

8. SIMPLE POLYTOPES AND DEHN-SOMMERVILLE RELATIONS

A convex polytope P C R¢ is called simple if tangent cone of every vertex is simplicial.
For example, tetrahedron, cube and dodecahedron are simple, but octahedron and icosahedron are not.

Define f-vector as f = (fo,...,fq), where fi is the number of k-dimensional faces with fq4 := 1. For example,
f-vector of cube is (8,12,6,1).

Can one describe all possible f-vectors of convex polytopes? In turns out that for simple polytopes it is possible.
Define f-polynomial as

d
= ijtj
i—0

and h-polynomial as

h(t) :=f(t—1) th)



The coefficients hy satisfy remarkable Dehn-Sommerville relations

g

In particular, hy = Z]-d:o(—ﬂjfj = hq = 1, which implies the d-dimensional Euler relation

d—1

x=) (1) =1+ (=14

j=0
The right hand side is called Euler characteristic of the boundary 9P, which is topologically equivalent to a
sphere S4=1. The claim is that it does not depend on P (in that case P need not to be simple).

The classical Euler relation corresponds to the polyhedral case d = 3:
fo—"T1 +T=2.

It is known (due to Stanley) that hy must satisfy the inequalities

(8) ’ho§h1 <---<hpy,

but there are additional (McMullen's) inequalities to be satisfied to make these conditions necessary and sufficient
for vector f to be f-vector of a simple convex polytope.

Example. For the cube we have
f(t) =t> +6t2 + 12t + 8,
ht) = (t—12 +6(t—12+12(t—1) +8 =13 +3t> + 3t + 1.

9. EXERCISES-II
1. Find the generating function o, x(z1,22) of the cone v+ K withv = (—3,1) and
K={A1(2,1) +A2(=1,3) : A1, A2 > O}

2. For a rational cone K = {Ayw1 +Aowy 1 A1,A; > 0} C R? consider v € R? such that the cone v+ K does not
have any integer points on the boundary. Prove that for the fundamental parallelogram TI

V+”:—(—V+”)+W] +wy,

and hence

1 1

0 vik(z1,22) = Oyik(—y —),

Z1 Z2

where both sides should be interpreted as rational functions. Deduce Stanley reciprocity
1 1
GKO(Z’M"'»Zd) = (_])dO—K(*»'--ai)
Z1 Z4

for d = 2. Use Stanley reciprocity to prove Ehrhart-Macdonald reciprocity for integral convex d-polytopes
1
Ehrpo(z) = (—1)d+1Eth(£).

3. Check Brion's theorem for the triangle A with vertices (0,0), (3,0),(1,3).

4. Compute h-polynomial for all remaining platonic solids: tetrahedron, octahedron, dodecahedron and icosahe-
dron, and check if Dehn-Sommerville relations are satisfied. The same question for the permutahedron (which
is truncated octahedron) and truncated icosahedron (which is a polyhedral model of football), see Fig. 8.

FIGURE 8. Permutahedron and truncated icosahedron

A.P. Veselov



