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Executive Summary

What is the best way to allocate

assets across an investment

portfolio to minimise risk? How

should an airline, operating on

razor-thin profit margins, assign

flight crew to flights to minimise

costs—at the same time meeting

regulations and ensuring the

schedule is robust? What is the

most effective way to test a

software system in a limited time?

Are there any unforseen security

holes in a new business-critical

computer system?

All these practical problems involve

finding solutions to complex

systems of constraining

requirements that can be

formulated mathematically. The

task resembles problem-solving in

school maths: formulate some

equations that relate quantities in

the problem to be solved, and then

find the right values for the

variables that make the equations

true. In business and industry,

however, the problems are vastly

larger and the mathematics much

more complex and varied.

These important problems cannot

be solved by hand, but must be

tackled by computer software

algorithms. A prominent example is

linear programming, a

mathematical optimisation

technique with wide applications in

modern company management and

microeconomics. First used in

earnest for planning in World War

II, linear programming has been a

mainstay of business and industry

since the 1950s.

Enter SMT

Over the past decade, a new and

revolutionary problem-solving

technology has emerged:

Satisfiability Modulo Theories, or

‘SMT’ for short. Like linear

programming, it is a computerised

method for finding solutions to

business and industrial problems

expressed mathematically by

systems of constraints. But SMT

can handle a richer language of

constraints than linear

programming, and the method

encompasses a more varied range

of mathematical concepts—so it

has the flexibility to tackle many

different kinds of problems.

With established success in the

engineering design of computer

chips, software that implements

SMT does have limits to the size of

problem it can handle—but it has

also seen truly astonishing

increases in speed and capacity

over the past decade.

The core SMT algorithms are

generic and not special to a

particular problem. So, end-users

who can frame their practical

business and industrial problems in

a mathematical way suitable for

SMT automatically benefit from

intense investment by the highly

skilled technical specialists who

develop SMT algorithms, a smart

way to tap into a sophisticated

technology that is improving by

leaps and bounds every year.

To exploit SMT effectively, you have

to express the problem to be solved

in the right mathematical way.

Some types of problems have

well-understood translations into

SMT, so the technology is ready for

early adoption by at least some

enterprises seeking competitive

advantage. SMT solutions to other

kinds of problems are the subject of

active academic and industrial

research—and many more lie

awaiting creative discovery.

This report explains the

background to SMT technology and

presents several success stories.

Our aim is to give a sense of the

potential of SMT as an effective

solution to some of today’s

problems—and a unique emerging

technology to watch in the future.
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Problem Solving with Satisfiability Modulo Theories

Computerised problem solving is

the practical science of using

computer algorithms to identify,

from among a class of potential

alternatives, a solution that meets a

complex set of requirements. It

begins with a real-world problem

that can be formulated

mathematically as a collection of

conditions, or ‘constraints’.

A computer program then carries

out mathematical calculations or

reasoning to produce a solution

that meets these requirements, if

one exists.

Mathematical optimisation methods

are an important class of

problem-solving methods that seek

a ‘best’ solution. The most

prominent is linear programming, in

which the solutions sought are

usually numerical and requirements

are expressed by linear constraints.

Linear programming and other

mainstream optimisation

techniques are in daily use in

business, industry, engineering,

economics and management.

There are dozens of commercial

and open-source software

packages for optimisation, including

specialised mathematical modelling

tools, as well as the ‘solvers’

themselves.

This report introduces a potentially

revolutionary, but still emerging,

problem-solving technology,

Satisfiability Modulo Theories,

normally just called ‘SMT’ for short.

With its roots in computer science

and mathematical logic, SMT takes

a completely different approach

than conventional optimisation

methods. The technology has

already established its practical

credentials in the extremely

challenging world of digital circuit

engineering, where it is used to

mitigate the risk of expensive

design errors. And, although

commercial SMT solutions are rare,

there are a number of

high-performance academic

software packages available for

research and commercial use.

The distinctive strength of SMT

partly lies in the way it can handle

complex combinations of individual

constraints. Requirements don’t

have to just impose some individual

conditions simultaneously: ‘C1

must hold and C2 must hold and

C3 must hold’. In SMT, any logical

Box 1: The SAT Problem and its History

Modern symbolic logic began in the 19th century with Boolean algebra, introduced

in 1847 by the English mathematician George Boole [9]. Boolean algebra intro-

duced the idea of expressing logical relationships by algebraic formulas. The opera-

tions of the algebra include conjunction ‘AND’ and disjunction ‘OR’, together with

negation ‘NOT’. Unknown truth values are named by variables. So, for example,

x AND (y OR NOT z) means x is true and either y is true or z is false (or both). As

the American mathematician Claude Shannon observed in the 1930s, these operations

provide a basis for design and analysis of digital electronic circuits. And of course they

are the fundamental mathematics of all modern digital computer technology.

Logic is of central importance in Computer Science and its applications [32] and a

range of sophisticated computer data structures and algorithms have been invented to

analyse formulas of Boolean algebra. One extremely important class of algorithm is

‘SAT solvers’. A formula is ‘satisfiable’ if there is an assignment of truth values to its variables that make it true. An

algorithm that solves the ‘SAT problem’ is one that, given any Boolean formula, can determine if it is satisfiable or

not. In practice, most algorithms also deliver an actual satisfying assignment of values to the variables if the formula is

indeed satisfiable. SAT was the first problem to be shown to be ‘NP-complete’, which implies that there is no known

algorithm that efficiently determines satisfiability of every possible Boolean formula.

But even though this theoretical analysis suggests that SAT is hard, modern SAT solvers can be remarkably effective

on the types of satisfiability problems that arise in real-life problems. Most of these procedures have their roots in the

so-called DPLL algorithm for Boolean satisfiability, introduced in 1962 by mathematicians and computer scientists

Martin Davis, Hilary Putnam, George Logemann and Donald W. Loveland. Honed over years of intense competition

between research groups, today’s highly engineered DPLL procedures can tackle huge formulas with millions of

variables. Already the cornerstone of formal verification for chip design, modern SAT solvers have immense promise

as practical algorithmic tools in many other areas.
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combination of conditions can be

used. For example, ‘exactly one of

C1 or C2 must hold, but if C1 holds

then C3 must not hold’. At the heart

of SMT lies an algorithm called

‘SAT’ that can solve logical

formulas of any kind, including

extremely large ones (see Box 1).

SMT algorithms also encompass a

more varied range of mathematical

‘subject matter’ than typical

optimisation solvers. Virtually all

SMT solvers support linear

numerical constraints—indeed,

they employ some of the same

fundamental algorithms for these

as conventional optimising solvers.

Some also allow nonlinear

constraints, which are in principle

much harder to solve.

But the mathematical ‘vocabulary’

of SMT solvers goes well beyond

this numerical, arithmetic domain.

In particular, it includes a wide

range of the mathematical concepts

that are needed to model and

analyse computer systems—digital

hardware and computer software,

and systems built from them. This

modern engineering domain is

completely outside the scope of

traditional optimising solvers, and is

the application area in which SMT

solvers currently excel. But,

because SMT can handle arbitrary

logical complexity and encompass

a variety of mathematics, it has

unique potential to tackle other

practical problems too.

In this report, we present some

success stories in the practical use

of SMT. We focus on giving the

reader a feel for what today’s

efficient SMT solvers can do. We

also give just a little of the key

technical background to SMT

technology.

What SMT does

SMT stands for Satisfiability

Modulo Theories. The notion of

satisfiability comes from

mathematical logic. An equation or

formula is satisfiable if, by choosing

appropriate values for the variables,

it can be made true. For example,

the equation x2 − 4 = 0 is satisfiable

and a solution is x = 2.

But what about the equation

x2 + 4 = 0? It depends on what

values x is allowed to range over.

This is where theories come in. A

theory defines what values a

variable can have and what the

symbols in the formula mean.

Assuming our example uses the

theory of real arithmetic, x must be

a real number and thus the second

equation is not satisfiable.

The power of SMT comes from its

ability to handle many different

kinds of theories. In addition to

arithmetic, SMT solvers can reason

automatically about Boolean

operators (such as AND, OR),

arrays and matrices, digital circuits,

character strings, and software

data structures such as lists and

trees. Many currently supported

theories have largely been devised

to support the ability of SMT

solvers to reason automatically

about computer programs and

systems. But the SMT framework is

extensible, meaning that new

theories can be defined and added

to suit specific application domains.

Another strength of SMT is the

ability to combine theories in any

arbitrary way. SMT solvers can

reason about, for example, a matrix

of integers, a list of circuits, or an

array of strings.

To make use of an SMT solver to

solve a problem, the statement of

the problem must first be encoded

as a logical formula. SMT solvers

answer questions of the form,

‘Given some conditions C, is it

possible for X to happen, and if so,

how?’ Each condition in C and X

must be modelled as a logical

formula called an assertion. The

SMT solver then checks whether it

is possible for all of the conditions

to be true simultaneously. If so, it

can give a specific solution showing

how (see Box 2 for an example).

SMT solvers can automatically

handle formulas that include

hundreds of variables, thousands of

equations, and may fill several

gigabytes of disk space.
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Success Stories

The first major success for SMT

was in flushing out design errors in

the logical functioning of modern

digital electronic chips. With the

cost of making the first prototype of

a chip running into the millions,

getting it wrong can be a very

expensive mistake. SMT and SAT

solvers are in everyday use by chip

designers as an aid to assuring the

quality of their designs.

Ultimately, chips are fabricated

using a collection of

photolithographic ‘masks’, which

define the microscopic structures to

be laid out on the silicon chip. The

cost of each set of masks is high

and, if an error in logical functioning

is discovered in a fabricated chip,

tracking down the cause is very

difficult. To have the best chance of

getting it right first time, massive

amounts of computer simulation

are used to check the design

before it is fabricated.

But such is the complexity of

today’s microchips that it’s not even

remotely feasible to simulate all

their possible operations and

configurations. Checking them all

would take an unimaginably long

time. By modelling a chip design

mathematically, however, its

functioning can often be expressed

quite compactly by mathematical

formulas. Mathematical proofs can

then be used to analyse its

correctness.

This is where SAT solvers and SMT

come in, to do the actual proofs,

which can be very large. One

method, known as ‘bounded model

checking’, checks the functionality

of a chip design up to a limited

number of cycles of operation.

Although this method will miss any

error that manifests itself after this

limit, it can still often cover much

more of the chip’s functionality than

simulation and so provides a

valuable net to trap design bugs.

Box 2: An SMT Example

Consider the following scheduling problem, adapted from [24]. Suppose two employees on duty are always needed

to run a certain warehouse. The warehouse operates 24/7 and each day is divided into three shifts: day, afternoon,

and night. There are nine employees available to cover the shifts, and we want to come up with a schedule for these

employees. We can model this as an SMT problem as follows.

Let S be a 9 × 7 matrix of integers so that S (i, j) represents which shift the i-th employee is working on the j-th day

of the week. We encode each employee’s shifts as follows: day = 1, afternoon = 10, night = 100, not working = 0.

To represent the fact that every entry in S has to take one of these values, we write 63 separate constraints:

S (1, 1) = 0 OR S (1, 1) = 1 OR S (1, 1) = 10 OR S (1, 1) = 100

S (1, 2) = 0 OR S (1, 2) = 1 OR S (1, 2) = 10 OR S (1, 2) = 100
.

.

.

S (9, 7) = 0 OR S (9, 7) = 1 OR S (9, 7) = 10 OR S (9, 7) = 100.

Using the shift encoding we have chosen, we can easily represent the fact that we need two workers for every shift by

imposing seven summation constraints:

S (1, 1) + S (2, 1) + S (3, 1) + S (4, 1) + S (5, 1) + S (6, 1) + S (7, 1) + S (8, 1) + S (9, 1) = 222

S (1, 2) + S (2, 2) + S (3, 2) + S (4, 2) + S (5, 2) + S (6, 2) + S (7, 2) + S (8, 2) + S (9, 2) = 222
.

.

.

S (1, 7) + S (2, 7) + S (3, 7) + S (4, 7) + S (5, 7) + S (6, 7) + S (7, 7) + S (8, 7) + S (9, 7) = 222.

This works because the only way to add nine shift numbers together to get 222 is if two of them are 100, two are 10,

two are 1, and the rest are 0.

A modern SMT solver can find a solution to all these constraints—producing a viable employee schedule to run the

warehouse—in less than a second. Additional constraints can easily be added to represent minimum and maximum

shift lengths, minimum and maximum number of days worked in a row, and illegal shift sequences (e.g. no one should

work a day shift immediately after a night shift).
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In bounded model checking, the

operation of the chip over a

bounded period of time is

represented by a formula of logic,

suitable for analysis by a SAT

solver or SMT. The variables in the

formula represent the individual

states the device has been in. A

second formula is created that

characterizes the occurrence of an

error in one or more of these

states. The conjunction of these

two formulas describes a fault

happening during the period

covered. If this formula is

satisfiable—and this can be

checked by SAT or SMT—a bug can

occur and the chip design is faulty.

The use of SMT for testing chip

designs is a well-establised

commercial reality. In the success

stories that follow, we highlight

some other technical areas in

which SMT technology really

shines. Some of these are mature

applications of SMT and ready for

early commercial or industrial

adopters. Others are on the

horizon.

Software quality

SMT is at the core of numerous

methods to improve the quality of

software. Automatic quality

assurance for software is a very

broad field, and we refer the

interested reader to a survey [23].

In what follows, we highlight

techniques in which SMT plays a

particularly important role.

Model-based engineering for

embedded systems. An

‘embedded system’ is a piece of

technology that has a built-in

computer. The computer is often

invisible to the user, as in a modern

car or a hearing aid. The design of

a product with an embedded

computing system is a highly

specialised and nontrivial task, and

takes years to complete. Because

of time-to-market pressures,

engineers typically have only very

little time to test the final product.

Much of the testing and design

validation thus happens with the

help of simulation of the design in a

computer. The simulation uses a

model of the design, that is, a

description of the behaviours of the

product in its environment.

Combinations of nontrivial software

and environment models are

sometimes referred to as

cyber-physical systems. Numerous

design tools have been deployed to

support the design of such

systems. Well-known examples

include Mathworks’ Simulink and

Wolfram’s SystemModeler.

The goal of simulation is to exercise

the design to learn about the final

product. This can enable the

engineer to identify critical

load-bearing parts, and optimise

them to save weight or energy.

Simulation requires a stimulus, that

is, suitable actions of the

environment that bring the design

to its limits. Inadequate stimuli can

give the engineer a false sense of

security, and may result in

mis-optimisation of the design.

The validation of cyber-physical

systems offers a genuine

opportunity for SMT solvers. The

key challenge is that environment

and system dynamics are often

nonlinear, which means that

traditional linear constraint solvers

reach their limits. Furthermore, the

software that is an integral part of

the design exhibits nontrivial

discrete behaviours, which are also

very difficult to model with linear

arithmetic. By contrast, SMT

solvers are exceptionally good at

modelling discrete systems and are

also able to reason about nonlinear

dynamics at the same time.

Model checking with SMT. Model

checking is a formal approach that

can be used on models of the kind

mentioned above. Model checking

explores all possible states of a

model (either explicitly or implicitly)

and checks each state to ensure

that it satisfies the required model

properties. Common existing

approaches to model checking are

based on propositional reasoning

and work extremely well on small

models but have difficulty scaling to

larger models. In addition, they only

apply to finite-state models.

SMT solvers are being used to

power a new generation of model

checkers, which scale better and

can handle infinite-state models.

One technique leveraged by SMT

solvers to accomplish this is

k-induction, which is a

generalisation of the standard

mathematical (1)-induction

technique. In the standard

technique, in order to prove a

property P holds for all times t, we

try to prove P(0) and the implication

P(k) implies P(k + 1). If we can

prove both, it follows that P(n) is

true for all n. Sometimes, the

property P may be true for all n, but

the implication P(k) implies P(k + 1)

does not hold. In this case, we say

that P is invariant but not inductive.

The k-induction technique can

often work for noninductive

properties P. The idea is to pick

some finite k and then prove that P

holds for P(0) . . . P(k − 1),

establishing that P holds for the first

k time steps. The inductive step is

to prove that P(n) . . . P(n + k − 1)

implies P(n + k). In other words,

instead of assuming P holds in just

one previous time step, we assume

that it holds in the k previous time

steps, a much stronger assumption.

A number of SMT-based model

checkers are being developed, with

very promising performance on

industrial models. These include

CBMC [22], the SAL infinite-state

model checker developed by SRI,

and the Kind [31] and PKind [35]

model checkers developed at the
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Figure 1: Model-based engineering helps ensure the quality of safety-critical embedded

software in cyber-physical systems such as aircraft and automobiles.

University of Iowa. A very

well-known application of Model

Checking to software is Mirosoft’s

Driver Verifier project [4]. Its current

version entirely relies on SMT

solving to increase the reliability of

Windows device drivers. Windows

device drivers are difficult to

implement, owing to a plethora of

programming rules. The Windows

Driver Verifier ships with

specifications for a good subset of

these rules, and generates a report

for the driver developer identifying

which rules are implemented

correctly. The driver verifier relies

on guessing invariants for the

loops. A loop invariant is a property

that holds at the beginning of the

loop. If the guess is right,

correctness of the driver can be

shown by means of mathematical

induction.

Formal program correctness. For

software that requires the highest

levels of assurance, no expense

may be too high. If the engineer

writes the necessary invariants

together with the software, SMT

solvers can be used to

automatically check that these

invariants ensure an airtight case

for the robustness of the software.

As an example, the UK air traffic

control system uses software for

predicting the trajectory of aircraft

and for conflict detection. These

features are implemented using

over 200 KLOC of ADA source

code by engineers at Altran in Bath.

A tool then analyses the source

code, and automatically generates

120,000 formulas that prove

exception-freedom of the software.

Generating tests for
better software

Software in cars and aircraft.

Safety-critical embedded software,

e.g. in cars or aircraft, has to satisfy

stringent safety standards.

The goal is to root out dangerous

software bugs through systematic

testing. But how do we know we

have done enough testing? The

completeness of the testing

process is frequently measured

using a coverage metric.

Well-known coverage metrics

include location coverage, branch

coverage and decision coverage.

There are also combinations of

these, e.g. the safety standard

DO-178B requires that software for

aircraft is tested with modified

condition/decision coverage

(MC/DC). There are similar

standards for cars and trains.

To compute the coverage metric we

first determine the test goals. A test

goal is a reachability property,

e.g. ‘the execution has reached

line 42’ could be a goal for location

coverage. A good-quality test suite

is a set of input sequences that

drive the system into states that

cover a large percentage of those

goals. The job of creating of a good

test suite is still largely manual, and

frankly, engineers hate this kind of

work. How can we use SMT to

make the computer do this for us?

The basic idea is simple: we take

the program and translate it into a

formula C. Every solution to the

formula C computed by our solver

corresponds exactly to one run of

the program. Suppose we have got

test goals G1,G2,G3 and so on
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to Gn. We then pass the formula

C AND (G1 OR . . . OR Gn)

to the solver. This means we want

an execution of the program that

covers at least one (but hopefully

many) of our test goals. We will

then look at the solution given by

the solver. Most importantly, the

solution contains the program

inputs that have to be fed into the

program, and we will add those

inputs to our test suite. We will then

identify which goals are covered by

the corresponding program

execution. The goals covered can

be scratched out of our set of

goals, and we will repeat this

process until we either cover all

goals, or the solver tells us that the

formula has no solution. In the

latter case, this means that the

remaining goals cannot be covered

by any execution.

Similar ideas are implemented in a

range of commercial tools for

testing safety-critical embedded

software, e.g. the Embedded Code

Analyzer by TCS and the BTC-ES

Embedded Tester.

The CBMC tool is an academic

implementation of this technique,

maintained at the University of

Oxford. CBMC is a Bounded Model

Checker, that is, the executions of

the program are explored up to a

user-provided depth [15]. The key

benefits of this approach are that it

is highly accurate (no false alarms

are generated) and that it is able to

generate counterexamples that aid

debugging and serve as test

vectors. The key disadvantage is

that behaviours that require longer

executions to manifest are missed

by the tool. The CBMC tool won

Gold in the 2014 software

verification competition.

SMT for testing large-scale

software. Not all software is

safety-critical. Buggy software

programs are an annoyance,

nevertheless, and in the best case

simply waste countless hours of

their users’ time. Getting the bugs

out of these programs by inspecting

their source code or by simply

testing them is very costly as well,

and testing and debugging is

already the most time-consuming

and most expensive task in

software engineering. More

automation of testing and

debugging is thus urgently needed.

We have already explained how to

use SMT for generating test inputs

for embedded software. The key

idea for that was to turn the entire

program into a formula, which is

then fed to the solver. However,

programs in many application areas

are simply too large for that, with

millions of lines of code. It is clear

that we will need to find a way to

split up the problem into smaller

pieces.

One way to make good use of our

solver in testing is as follows.

Suppose we begin with an arbitrary

test input to our program. The test

input will exercise our program in

one particular way. We will record

the behaviour of the program by

noting down the sequence of

statements that are executed by the

computer. This sequence is called

the program path, and if there is a

bug, some program path will

expose it. The problem is that even

small programs can have billions of

program paths, and it is tricky to

pick the right inputs that expose

the bug.

The idea of Directed Automated

Random Testing (DART) [30] is as

follows. Instead of encoding the

entire program, we will pick some

small subset of the instructions that

are on the program path we have

recorded earlier, and encode just

those. The instructions that DART

chooses to encode are, in general,

only a tiny fraction of the full

program, and we therefore obtain a

much more tractable SMT formula.

As we aim to exercise a different

path, we will furthermore add a

constraint to the formula that says

that at least one of the branch

decisions along the path needs to

turn out differently. This way, the

solver will generate new inputs for

us that will trigger the execution of

a new path that we have not yet

explored. DART can be combined

with heuristics that pick branches to

explore that are particularly

promising, e.g. by directing the

execution towards a portion of the

code that is known to be

problematic.

Computer security

Automatic Exploit Generation

(AEG) [2, 3] is an SMT-based

technique for finding security

vulnerabilities in software. The

basic approach is as follows. A

software program together with

some basic properties that

programs should have (e.g. a

program should not access data

from another program) are fed to

an analyser. The analyser chooses

a particular path through the

program. It then creates an SMT

formula which models running the

program along that path while at

the same time violating at least one

of the given basic properties the

program is supposed to have. If the

formula is satisfiable, this means

that for appropriate program inputs,

it is possible to have the program

take the path in question and

violate one of the program

properties. The required inputs are

easily obtained from the satisfying

assignment provided by the SMT

solver.

If such an input is found, there is

definitely a bug in the program, but

it is still not clear whether the

security of the system can be

compromised. To determine this,

an additional formula is constructed
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Figure 2: The cryptography used in keyless entry fobs from 10 years ago may be

susceptible to brute-force attacks by modern SMT solvers.

which is satisfiable if there exists a

way to exploit the bug for a security

attack. This formula is also sent to

the SMT solver. If the second

check succeeds, a security

vulnerability has been found. Due

to the power of SMT solving, this

entire process is automatic and

only takes a few seconds.

The Mayhem tool is a robust

implementation of AEG available

from ForAllSecure Inc., a company

founded by the team who

pioneered this work at Carnegie

Mellon University. For more

information, see Appendix 1.

Network security. As computer

networks continue to grow and

become more sophisticated,

ensuring that network-accessible

data is secure becomes more

challenging. Of course, finding

ways to automate this task are

essential for scalability. SMT

technology is being leveraged in

several ways to aid in this important

task.

Network protocols are required

whenever two or more parties need

to coordinate an exchange of

information over the network.

Often, the information is sensitive

and needs to be exchanged

securely. Protocol manipulation

attacks are actions that can be

taken by a third party to disrupt the

exchange by either stealing

sensitive information or misleading

one of the parties into accepting

false information. Discovering

manipulation attacks is challening

because they usually involve

multiple distinct actions by third

parties over time. MAX [38] is a

manipulation attack detector that

takes as input an implementation of

a protocol and attempts to generate

attacks against that

implementation. To do this, it must

explore many possible code

behaviors. This is done by using

SMT to model the question of how

to get new behaviours from a piece

of code. The solutions provided by

the SMT solver can be translated

into inputs that create the new

behaviour.

Access control mechanisms are

used to specify precisely who is

allowed to access a piece of data.

Role-based access control is

popular because of its flexibility.

In [29], a language called ΦRBAC

is described which allows users to

define flexible and high-level RBAC

mechanisms which are then

automatically translated into

WebDSL, a special language for

high-level web application

development. An SMT solver is

used to check automatically that

the policies specified by the user

have no contradictions and cover

all cases, checks that would be

very difficult to do manually.

OpenFlow [42] is a new and open

standard for managing flow in

enterprise networks. It allows

network managers to write custom

programs that can dynamically

change how data flows through the

network. While very flexible,

OpenFlow creates new security

challenges. Flover [55] is a system

which takes as input a set of

OpenFlow rules and an underlying

security policy, and translates them

into a set of SMT assertions. If the

SMT solver finds a solution, this

can be used to show how the

OpenFlow rules violate the security

policy. If no solution is found, this

means that the rules follow the

security policy.

Attacking old crypto. Got some

old crypto? Say a keyless entry

system for a car? If you are set out

to demonstrate its weaknesses, no

need to hire Bruce Schneier. In

many cases, a workable exploit can

be produced even by those not

versed in cryptoanalysis. SMT, or

more specifically the bit-vector

theory, is typically good enough to

do the job.

Breaking a previous-generation

crypto implementation is often

easily done as follows. Suppose

that a system uses a (supposed)

one-way hash-function h for

authentication purposes. The most

important property of such a

hash-function is that given the
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value h(x) for some x, it is difficult

to obtain a so-called collision,

i.e. some y that is not x but

nevertheless yields the same hash.

Using SAT/SMT, it often suffices to

simply give the formula

∃y. h(y) = h(x) ∧ x , y

to your favourite solver. This was

already demonstrated in 2006 for

the well-known cryptographic hash

functions MD4 and MD5 by

researchers at Microsoft [44]. The

good news, at least for those

among us concerned about

security of modern-day systems, is

that cryptography in current

systems is beyond the reach of

SAT and SMT.

Scheduling and
optimisation

Scheduling refers to the ‘optimal

allocation of scarce resources to

activities over time’ [36]. Examples

include the scheduling done by a

computer operating system in order

to run multiple programs

simultaneously, dividing tasks

among a group of workers while

satisfying certain constraints, and

organising the sequence of events

that must occur in order to

complete a product in a factory

assembly line.

A variety of techniques exist for

solving scheduling problems.

Recently, a number of studies have

looked at using SMT techniques for

scheduling. The example from

Box 2 illustrates an example

adapted from one of these studies

on workforce scheduling [24]. In

that study, 20 workforce scheduling

problems were encoded as SMT

problems. Two alternative

encodings were investigated, one

using arithmetic and the other

using bit-vectors. These

approaches were tried on a number

of solvers and results were

compared with those obtained

using state-of-the-art scheduling

tools. The SMT bit-vector approach

performed the best of all exact

solvers (meaning solvers that

search all possibilities rather than

just heuristically searching some

subset of possibilities), solving 18

of the 20 problems.

Often, scheduling problems include

an optimisation condition: what is

desired is not just any schedule

satisfying the constraints, but a

schedule which, in addition to

satisfying the constraints, also

minimises some cost function

(maximising can be handled

analogously). Fortunately, SMT can

be extended to handle optimisation

by adapting classical techniques

such as branch-and-bound and

binary search [14, 45].

Experimental results using SMT for

optimisation are promising. In [45],

the authors show that

branch-and-bound can be used

effectively to solve CELAR Radio

Link Frequency Assignment

problems. These problems are not

easily solved by traditional integer

linear programming techniques,

and the best-known approaches

use Constraint Satisfaction

Programming (CSP). The SMT

technique outperforms the best

CSP tools on the most difficult

instances. Another study [1] looks

at using SMT techniques to solve

the Resource-Constrained Project

Scheduling Problem. The best

SMT techniques use a mix of

Figure 3: Determining the most efficient sequence of events in a factory assembly line is

a challenging scheduling problem.
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branch-and-bound and

binary-search. Together, they solve

more problems overall than the

best integer linear programming

techniques (a hybrid SAT/CSP

technique is also shown to perform

well). A final study [49] again

shows that SMT techniques are

competitive with linear

programming techniques, doing

especially well on strip-packing

problems. This final study also

highlights an additional important

point. Linear programming solvers

typically use floating point

arithmetic and are thus subject to

rounding errors. As a result, they

may occasionally give incorrect

results regarding the satisfiability of

a set of constraints. SMT solvers

use exact multi-precision arithmetic

and thus do not have this

weakness.

In 2010, the authors of the first

study mentioned above founded a

company, Barcelogic, which

specialises in SAT and SMT-based

scheduling and optimisation. For

more information, see Appendix 1.
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SMT in Depth

As mentioned above, SMT solvers

answer questions of the form,

‘Given some conditions C, is it

possible for X to happen, and if so,

how?’ In this section, we take a

closer look at how to use an SMT

solver to answer such questions.

The key is to understand the

language in which conditions are

expressed and various techniques

for encoding real-world problems

into this language.

The language of SMT

At the most abstract level, the

language of SMT is the language of

mathematical logic. This means

that it includes things that are

familiar from high school

mathematics, such as arithmetic,

functions, algebra, logical

reasoning, etc. But it is more

powerful than any of these simple

components. We will introduce the

language using examples.

Arithmetic. Consider the following

problem: Alice is twice as old as

Bob was three years ago and Bob

is three times as old as Alice was

four years ago. How old are Alice

and Bob? This problem can be

modelled using simple arithmetic

operations. If a is Alice’s age and b

is Bob’s age, then the situation is

described by two equations:

a = 2(b − 3) and b = 3(a − 4). In the

terminology of SMT, we would call

each equation an assertion. Below,

we show an interactive session

using the CVC4 SMT solver to

solve this problem.

>cvc4 --dump-models --int

CVC4> a,b:INT;

CVC4> ASSERT a = 2*(b - 3);

CVC4> ASSERT b = 3*(a - 4);

CVC4> CHECKSAT;

sat

a : INT = 6;

b : INT = 6;

First, we tell the solver that we will

be using two variables, a and b,

both of which are INT (integers).

Next, the two assertions are given.

Then, we issue the CHECKSAT

command, which tells the solver to

check the assertions it has seen so

far. The solver replies either sat

(for satisfiable), meaning there is a

solution, or unsat (for

unsatisfiable), meaning there is no

solution. In this case, there is a

solution, and so the solver can then

provide a model, which simply

means a value for each variable.

These assertions have a unique

model, a = 6 and b = 6. If there is

more than one model, the solver

will return a random one. In such

cases, we can rerun the solver with

an additional assertion ruling out

the previous model. By repeating

this, we can find all possible

models.

The language of SMT includes

equations, inequalities, and basic

arithmetic operations like addition,

subtraction, multiplication and

division. Variables can range over

integers or real numbers. The

assertions shown above actually

fall into a simple arithmetic

fragment called linear arithmetic

(linear arithmetic does not allow

multiplication unless one of the two

terms being multiplied is a numeric

constant). Efficient algorithms exist

for linear arithmetic. Nonlinear

arithmetic is much more difficult

(especially over integers) and is not

supported by all solvers.

This highlights one challenge for

users of SMT solvers: seemingly

small differences in the language

being used can lead to huge

differences in what the solver can

solve. This is part of a larger and

well-studied area of computer

science called computational

complexity.

Boolean reasoning. Consider the

following problem: Alice is either

twice as old as Bob or 2 years

younger than Bob. Bob is either

twice as old as Alice or 3 years

younger than Alice. Alice’s age is

more than 0 and is not 2. The SMT

input for this problem is shown

below.

> cvc4 --int --dump-models

CVC4> a,b:INT;

CVC4> ASSERT a=2*b OR a=b-2;

CVC4> ASSERT b=2*a OR b=a-3;

CVC4> ASSERT a>0 AND NOT a=2;

CVC4> CHECKSAT;

sat

a : INT = 6;

b : INT = 3;

Notice the use of OR, NOT, and AND.

These are called Boolean

operators. SMT allows

sophisticated assertions to be built

up using any combination of simple

assertions and Boolean operations.

The ability of SMT to reason

efficiently even when given

arbitrary Boolean expressions is

one of its important strengths. Note

that, by contrast, linear

programming tools are typically not

very effective for constraints that

use OR and are thus more limited in

how easily they can be applied to

certain real-world problems.

Functions. A surprisingly useful

construct supported by SMT is the

notion of an uninterpreted function,

meaning a function about which we

know nothing other than that it is a

function. These functions can be

used for modelling in a variety of

ways. Consider the following simple

example. Suppose we want to

show automatically that if a = b

then ax = bx. In order to avoid

having to reason about nonlinear
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arithmetic, we can instead use

abstraction to replace multiplication

by an uninterpreted function, m,

and instead try to show that if a = b

then m(a, x) = m(b, x). Showing this

only requires reasoning about

addition and functions. Note that

because multiplication is a function

and m is definitely some function, if

we can show the abstract property,

this also proves that the original

property holds. We can show the

abstract property by showing that

that it is impossible for a = b to be

true while m(a, x) = m(b, x) is false.

> cvc4 --int --dump-models

CVC4> a,b,x : INT;

CVC4> m : (INT,INT) -> INT;

CVC4> ASSERT a = b;

CVC4> ASSERT

NOT m(a,x) = m(b,x);

CVC4> CHECKSAT;

unsat

Bit-vectors and arrays. One of the

most successful applications of

SMT has been in the analysis of

hardware and software. For these

analyses, the ability to reason

automatically about computer

representations of data is crucial.

The bit-vector theory provides this

capability. A bit-vector is a

fixed-length string of 0’s and 1’s.

SMT solvers can reason about

bit-vectors and many interesting

operations on them including

concatenation and extraction,

bit-vector arithmetic, and bit-wise

Boolean operations. Consider the

following example, which tries to

find nonzero bit-vectors a and b

(of length 2 and 4 respectively)

such that concatenating a with b

gives the same result as

concatenating b with a.

Concatenation is represented by

the @ symbol, and binary constants

are represented as strings of 0’s

and 1’s prefixed with 0bin.

> cvc4 --dump-models --int

CVC4> a : BITVECTOR(2);

CVC4> b : BITVECTOR(4);

CVC4> ASSERT a @ b = b @ a;

CVC4> ASSERT NOT (a = 0bin00);

CVC4> CHECKSAT;

sat

a : BITVECTOR(2) = 0bin01;

b : BITVECTOR(4) = 0bin0101;

Another crucial capability for

reasoning about hardware and

software is the ability to model

memory. This is provided by the

theory of arrays. Arrays are

indexed collections of elements.

The language of arrays includes an

operation to read an array at some

index and an operation to write a

new value to an array at some

index. Reading an array a at index

i is written a[i], and writing a new

value x at index i is written

a WITH [i] := x. As an example,

consider trying to show that in

some cases, writing to an array at

index i and then j is not the same

as writing to the same array at

index j and then i.

>cvc4 --dump-models --int

CVC4> a,b1,b2,c1,c2 :

ARRAY INT OF INT;

CVC4> i,j,x,y : INT;

CVC4> ASSERT b1 =

a WITH [i] := x;

CVC4> ASSERT b2 =

b1 WITH [j] := y;

CVC4> ASSERT c1 =

a WITH [j] := y;

CVC4> ASSERT c2 =

c1 WITH [i] := x;

CVC4> ASSERT NOT b2 = c2;

CVC4> CHECKSAT;

sat

i : INT = 0;

j : INT = 0;

x : INT = 0;

y : INT = -1;

The above example shows that

when i and j are the same but the

values written are different, the

resulting arrays are different as

well.

Quantifiers. Quantifiers are a

powerful logical construct that allow

one to generalise statements. For

example, asserting f (0) = 0 states

that the value of f at zero is zero.

The existential quantifier ∃ can be

used to generalise this by saying

that f is zero at some point, but we

don’t know which. This is

expressed as ∃ x. f (x) = 0. On the

other hand, the universal quantifier

∀ can be used to generalise by

saying that f is zero at all points.

This is written ∀ x. f (x) = 0. The

following example shows how this

last fact can be used to show that it

is not possible for there to be an

integer y such that f (y) = 1 (in the

CVC4 language, universal

quantification is expressed with

FORALL).

> cvc4 --dump-models --int

CVC4> f : INT -> INT;

CVC4> y : INT;

CVC4> ASSERT

FORALL (x:INT): f(x) = 0;

CVC4> ASSERT f(y) = 1;

CVC4> CHECKSAT;

unsat

While some SMT solvers do

support the use of quantifiers,

using quantifiers can make the

problem much harder. In general,

the use of quantifiers increases the

computational complexity of the

problem. Even SMT solvers that do

support quantifiers will fail to solve

some problems that use quantifiers,

either by running for a long time

with no answer, or by returning the

answer unknown.

Putting it all together:
a software security
example

Consider the following simple piece

of C code:

int getPassword()



A KNOWLEDGE TRANSFER REPORT FROM

THE LMS AND THE SMITH INSTITUTE

15

{

char buf[4];

gets(buf);

return strcmp(buf,"SMT");

}

void main()

{

int x = getPassword();

if (x) {

printf("Access Denied\n");

exit(0);

}

printf("Access Granted\n");

}

When this program is run, it waits

for an input from the user. If the

user enters ‘SMT’, then they get the

‘Access Granted’ message.

Otherwise, they get the ‘Access

Denied’ message. Or at least, that

is what is supposed to happen. It

turns out that this program has a

security vulnerability—a buffer

overflow attack can be used to get

the ‘Access Granted’ message

even without knowing what the

correct input is (on a Linux x64

platform running gcc 4.8.2, an input

consisting of 24 arbitrary

characters followed by ], 〈ctrl-f〉,

and @, will bypass the ‘Access

Denied’ message).

Briefly, the problem is that when the

gets function is called, there is no

limit to the size of the input that the

user can provide. However, the

program only reserves enough

space for an input of size 4. If the

user provides a longer input, then

those input characters will run over

into other parts of the computer

memory including a part of memory

that stores the location of the code

to be run after getPassword

completes. With the right input, we

can trick the program into jumping

to the line of code that prints

“Access Granted”.

But what is the right input? We can

model the problem using SMT. We

will use bit-vectors to model the

internal state (called registers) of

the CPU while executing the

program, and we will use arrays of

bit-vectors to model the computer

memory and the user’s input.

When getPassword is called, the

location of the code to run when

getPassword completes (the if

statement) is put into a special

location in memory called the stack.

The top of the stack is pointed to by

the internal stack pointer register

(sp for short). When getPassword

is called, the top of the stack

contains the address of the if

statement. The first thing that

happens after getPassword is

called is that sp is decreased by 4

to make room for the 4-character

array buf (which is also stored on

the stack). Next, the call to gets

writes input characters into memory

starting with the location pointed to

by sp. When getPassword is

finished, sp is increased by 4,

reclaiming the memory occupied by

buf, and then the instruction

pointer register (ip for short) is

loaded with the location pointed to

by sp. We wish to determine

whether it is possible to set ip to a

value that we choose instead of the

location of the if statement. The

SMT formula shown in Figure 4

models a simplified version of the

above program.

We use a couple of encoding tricks

here. First is something called

static single assignment (SSA).

SSA represents the same variable

at different times by using different

names for the different times. For

example, the stack pointer is

represented initially by sp0, and

then later by sp1, and then finally

by sp2. As the variable changes,

the relationship between its

previous value and new value is

captured with a formula that relates

them. For example, the expression

sp1 = BVSUB(8,sp0,0bin100)

tells us that the new value of sp is

equal to the old value minus 4 (the

first parameter of 8 is used to

specify the bit-width of the

operation).

Another trick is loop unrolling. We

have modelled the call to gets as a

series of 5 writes to memory. This

corresponds to an input of 5

characters, meaning that a loop

that reads a single character would

get executed 5 times. How do we

know how many times to unroll the

loop? In general, we don’t, but in

practice we can start small and try

more and more loop unrollings until

we find a satisfying assignment or

give up. For this example, if we use

4 or fewer unrollings, the solver

returns unsat. However, with 5

characters, the result is sat. In

particular, with an input of 5

characters, the last character of the

input will become the new value

of ip.

Several other simplifications are

made in this example for ease of

understanding and exposition: we

use a memory word size of 8 bits (1

byte), we don’t model the final NULL

character of the input, and we

ignore the base pointer (bp).

However, these details can easily

be added. Encodings like the one

sketched here can be used to

automatically detect bugs and

vulnerabilities in sophisticated

software programs.

The SMT-LIB

Initiative

The SMT-LIB initiative is a broad

effort whose goal is to provide

resources and direction for both

SMT developers and users. One of

its main goals has been to produce

and maintain a language standard

for SMT inputs, called the SMT-LIB

language, and encourage SMT

developers to support the

language. Version 1 of the

language standard became
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sp0,sp1,sp2:BITVECTOR(8);

ip:BITVECTOR(8);

m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);

in : ARRAY INT OF BITVECTOR(8);

ASSERT sp1 = BVSUB(8,sp0,0bin100);

ASSERT m1 = m0 WITH [sp1] := in[1];

ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];

ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];

ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];

ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];

ASSERT sp2 = BVPLUS(8,sp1,0bin100);

ASSERT ip = m5[sp2];

ASSERT NOT ip = m0[sp0];

CHECKSAT;

Figure 4: SMT formula generated from our software security example in C.

available in July 2004. Version 2.0

was released in March 2010. It is

expected that additional updates

will take place periodically. Note

that the examples in this report are

in the CVC4 language rather than

the SMT-LIB language. We chose

the CVC4 language because it is a

little easier for humans to read,

whereas the SMT-LIB language is

more difficult to read because of its

use of prefix notation. On the other

hand, the SMT-LIB language is

easier for machines to process

quickly. To illustrate the difference,

we show below the SMT-LIB

translation of the first example from

the Arithmetic section above

(QF LIA is an SMT-LIB logic

designation for quantifier-free linear

integer arithmetic).

(set-logic QF_LIA)

(set-info

:smt-lib-version 2.0)

(declare-fun a () Int)

(declare-fun b () Int)

(assert (= a (* 2 (- b 3))))

(assert (= b (* 3 (- a 4))))

(check-sat)

(exit)

A closely related goal of the

initiative has been to collect a large

and representative sample of

application benchmarks in the

standard language. The SMT-LIB

benchmark library now includes

over 100,000 benchmarks covering

25 logics (a logic, as used in

SMT-LIB, is a particular subset of

the full SMT language). The

benchmarks are now standard

metrics used in academic papers

and have also been used in the

SMT competition (the competition

has been held annually since 2005

with the exception of 2013 when a

more extensive SMT evaluation

was done instead). More

information about the SMT

community and publicly available

SMT resources can be found under

‘Further reading’ in the ‘Next Steps’

section below.
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Current Challenges

SMT solvers are becoming robust

and versatile tools used in many

applications, but there are still

some challenges preventing more

widespread use and adoption.

1. There are a number of mature

SMT solvers that are

commercially available (or free)

and well supported (see

Appendix 3). But SMT solvers

are typically used as back ends

to more application-specific

software tools. This means that

to use an SMT solver, you need

an appropriate front end for

your application. Unfortunately,

there are not yet very many

commercial applications

available that leverage SMT

technology. Most projects using

SMT solvers are either research

prototypes or company-internal

products not available outside

(some exceptions are listed in

Appendix 1).

This means that if you want to

use SMT in your domain, you

may have to get involved with

the development of a custom

front end, including determining

the best way to model your

problem using logical formulas.

This can also be seen as an

opportunity, as such a project

would put you in a position to

shape a domain-specific

package that generates the

right formulas for your particular

problem domain.

A good way to do this is to

create a collaboration with an

established SMT research

group (see Appendix 2),

perhaps by sponsoring a PhD

student to work in your

application domain. This

provides a concrete way to get

someone with SMT expertise to

work on your problem—and if

the student enjoys the work, you

may be able to hire them when

they graduate, thus obtaining an

expert who is trained in the

domain you care about.

2. Different solvers for different

theories in SMT vary in their

computational complexity. This

means that the robustness of

the tool depends a lot on the

formula it is working on. If an

application only produces

formulas using real linear

arithmetic, for example, the

solver is likely to perform well

and scale to large problem

instances. If the application

uses nonlinear arithmetic or

quantifiers, the solver will be

more fragile, working well on

some problems but unable to

solve others that seem to differ

only slightly. Researchers are

working on ways to make SMT

solvers more robust across a

variety of theories, and as these

techniques become more

mature, users will have a better

understanding of how to avoid

situations where the SMT solver

is unlikely to succeed.

3. While the framework of modern

SMT solvers allows new

theories to be added and

plugged in, in practice this is an

activity that currently can only

be undertaken by (or in

consultation with) an SMT

expert. Efforts are underway to

make it possible for nonexperts

to add theories by developing

languages or APIs for adding

new theories.

4. There are only a very few SMT

experts in the world meaning

that it can be quite difficult to

find someone to lead an effort

requiring SMT expertise.

Sponsoring a student

(mentioned above) is one way

to overcome this challenge.
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Next Steps

A few companies do provide

SMT-based solutions to challenging

problems. If you’re fortunate

enough to have one of these

problems, you may want to contact

one of these companies to find out

more about their business solutions

(see Appendix 1). If, on the other

hand, your application does not

seem to be covered by an existing

business solution, you may want to

consider partnering with an

academic or industrial research

group (see Appendix 2) to develop

a new solution. Many researchers

are interested in investigating and

supporting promising new

application areas.

Hands-on experience

Appendix 3 lists the most

prominent SMT solvers available

today. Many of these tools have

associated web pages with

documentation and tutorials, and

some (such as CVC4) have active

user groups with mailing lists.

Browsing the web pages and

working through some of these

tutorials is a good way to learn

about what SMT solvers can do.

The CVC4 input language is

described at [18] with many

examples. A tutorial on using the

CVC4 C++ API can be found

at [62]. Z3 is a popular SMT solver

from Microsoft Research. An

interactive web site with puzzles

and tutorials is at [66].

Further reading

There are at least three textbooks

that cover topics relevant to SMT

solvers in some detail [10, 33, 39].

They are too technical for a general

audience, but should be accessible

to someone with a strong

background in logic or computer

science. In addition, there are

several survey articles about SMT

that provide a higher-level (but still

quite technical) overview of relevant

topics [6, 7, 48].

The SMT-LIB website [52] contains

information about the SMT-LIB

standard, including the official

document describing the SMT-LIB

language, a tutorial developed by

David Cok, and a link to the

SMT-LIB mailing list. It also

contains many other useful links.

The SMT competition website,

SMT-COMP, [51] contains results

from the most recent SMT

competition (and from older

editions as well) . These results

give some indication as to the

relative performance of different

SMT solvers.

Conferences and
workshops

SMT is an active area of research.

Conferences and workshops

provide opportunities for users and

developers of SMT to gather and

discuss the latest breakthroughs

and challenges. The primary forum

for all SMT topics is the

International Workshop on

Satisfiability Modulo Theories, held

each year (see [53]). The SMT

workshop is typically co-located

with a broader related conference

such as the International

Conference on Computer Aided

Verification (CAV), the International

Conference on Automated

Deduction (CADE), the

International Joint Conference on

Automated Reasoning (IJCAR), or

the International Conference on

Theory and Applications of

Satisfiability Testing (SAT).
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Appendix 1: Business Solutions using SMT

AdaCore/Altran: SPARK is a programming language (a subset of the Ada language) with extensive tool support

for formal verification. It has been used in a number of safety-critical software projects. The SPARK toolset is

developed and maintained as a partnership between Altran [57] and AdaCore [58]. SMT solvers are used

internally to do the verification.

Barcelogic: Barcelogic [5] is a company which uses SAT- and SMT-based techniques to solve industrial

scheduling and optimisation problems. Their technology is based on the Barcelogic SMT solver, which was a

frequent winner in the SMT Competition from 2005 to 2009.

BTC-ES: BTC-ES [11] offers tools for automating testing and verification of software for embedded systems that is

designed with Simulink. Their tool BTC EmbeddedTester automatically generates a formula that encodes

frequently required coverage criteria for safety standards such as ISO 26262.

ForAllSecure: ForAllSecure, Inc. [26] is a company whose mission is to ‘test the world’s software.’ Their Mayhem

tool uses an SMT back-end to automate bug-finding for binary programs, additionally checking to see which

bugs can lead to security vulnerabilities. ForAllSecure was founded by David Brumley, a professor at Carnegie

Mellon University.

Programming Research: Headquartered in Hersham, UK, Programming Research develops the PQRA tool suite

for static analysis of C and C++ programs [47]. Their analysis uses solvers for the accurate and precise

detection of defects like buffer overflows and use of uninitialised data.

SRI International: The Symbolic Analysis Laboratory (SAL) [60] is an open-source tool suite developed under the

GPL license by SRI International for the symbolic analysis of systems. It includes tools for abstraction, program

analysis, theorem proving and model checking. Many of these tools rely on an SMT solver. SAL includes the

ICS SMT solver by default but works best with SRI’s Yices SMT solver (which must be specifically selected at

download time because it has a more restrictive license).

Appendix 2: Active Researchers and Practitioner Groups

SMT and its applications is a rapidly growing field, with many developers and users of the technology in the UK and

around the world. The list given here is not intended to be exhaustive—but instead to give a cross section of the

SMT community in the UK and beyond. Our apologies are offered to any group we left off this list.

In the UK

University of Cambridge: Smten is a unified language developed at Cambridge for general-purpose functional

programming and SMT query orchestration [46]. It aims to simplify the production of practical SMT-based tools

for computer aided verification. An open-source implementation is available in the form of a plugin to the

Glasgow Haskell Compiler.

University of Edinburgh: Paul Jackson develops proof procedures for nonlinear arithmetic, and investigates their

application to formal verification of hybrid systems [34]. He has also developed a tool, called Victor, that can

translate proof obligations from the SPARK toolset into the SMT-LIB language.

University of Manchester: Internationally leading experts in first-order provers, Konstantin Korovin [37] and

Andrei Voronkov [64], are also active researchers into algorithms and tools for SMT.

University of Oxford: Daniel Kroening [40] and Tom Melham [43] develop program and hardware analysis tools

that use SMT-based reasoning engines. Daniel Kroening is a co-author of the Decision Procedures book [39].
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Internationally

University of Bremen: Florian Lapschies is a researcher in Jan Peleska’s operating and distributed systems

group who has developed the SONOLAR SMT solver [56], a solver for arrays and bit-vectors, for use in

automatic test case generation.

Fondazione Bruno Kessler: A number of researchers in the center for information and communication technology

at FBK [13] helped lay the foundations for modern SMT work, including Alessandro Armando, Alessandro

Cimatti, Alberto Griggio, and Silvio Ranise. Cimatti and Griggio are primary developers of the MathSAT SMT

solver, which has won awards in several SMT competitions and is used in a number of industrial applications.

MathSAT is also used as a backend in nuXmv [12], a model checker for infinite-state systems.

University of Freiburg: Jochen Hoenicke, Jürgen Christ, and Alexander Nutz have developed SMT Interpol [54],

an SMT solver specialising in the computation of interpolants.

Technical University of Catalonia: The Logics and Programming group [41] includes Robert Nieuwenhuis, Albert

Oliveras, Enric Rodrı́guez-Carbonell, and Albert Rubio, who all work on SMT and its applications. They have

developed the Barcelogic SMT solver and Nieuwenhuis, Oliveras, and Rodrı́guez-Carbonell are founders of the

Barcelogic company.

Intel Corporation: Amit Goel, Jim Grundy, and Sava Krstić at Intel’s Strategic CAD Labs have developed an

open-source SMT solver called the Decision Procedure Toolkit [20]. They have also used SMT for software

verification at Intel.

University of Iowa: Cesare Tinelli is an automated reasoning researcher with extensive expertise in SMT [61].

With Silvio Ranise, he founded the SMT-LIB initiative and continues to play a leading role in guiding the initiative.

He and Clark Barrett are the project leaders for the development of the CVC4 SMT solver, an industrial-strength

open-source SMT solver which is also a research platform. He is also the project leader for the Kind and PKind

model checkers.

Johannes Kepler University: Armin Biere is the developer of Boolector, an SMT solver for bit-vectors and

arrays [8]. Biere is an editor of the Handbook of Satisfiability, and decision procedures for SAT and SMT

developed by him or under his guidance have ranked at the top of both the SAT and the SMT competitions.

University of Lugano: Natasha Sharygina leads the Formal Verification and Security Lab [27], which develops

and applies SMT techniques. They are the authors of the OpenSMT SMT solver.

Microsoft Research (Redmond): Leonardo de Moura, formerly at SRI International where he was a co-author of

the original Yices SMT solver, joined Microsoft Research in 2006 [19]. He, Nikolaj Bjørner and Christoph

Wintersteiger develop the Z3 SMT solver, which has dominated recent SMT competitions and is the most widely

used solver in SMT applications today.

INRIA: Pascal Fontaine [25] and David Déharbe [21] lead the development of the veriT SMT solver, which has

strong capabilities in proof production and quantifier reasoning.

New York University: Clark Barrett leads the Analysis of Computer Systems (ACSys) group at NYU [63]. One

major focus of the group is the development of theory and tools for SMT. In collaboration with the University of

Iowa, they manage the development of the CVC4 SMT solver.

Paris-Sud University: Sylvain Conchon [17] is the primary developer of the Alt-Ergo SMT solver, with unique

capabilities in reasoning about polymorphic data types and associative and commutative symbols.

SRI International: SRI [16] employs several SMT experts, including Natarajan Shankar, Bruno Dutertre, and

Dejan Jovanović. They have developed several solvers including ICS, Simplics, and their current flagship SMT

solver, Yices. Yices was one of the first high-performance SMT solvers, winning every division of the 2006 SMT

competition.

Technion – Israel Institute of Technology: Ofer Strichman works on the development and application of SAT

solvers and their optimisation, as well as research on decision procedures for first-order theories and SMT [59].

He is a co-author of the Decision Procedures book [39].
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University of Trento: Roberto Sebastiani [50] works on SMT and its application to formal verification. He is part of

the team developing the MathSAT SMT solver.

University of Waterloo: Vijay Ganesh’s research interests include the application of automated reasoning

techniques, including SMT solvers, to software engineering [28]. He is the primary author of the STP SMT

solver, which won the bit-vector category of the SMT competition in 2006 (tied with SRI) and in 2010.
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Appendix 3: SMT Solvers

Many different software implementations of SMT are available, including both research tools and commercially

developed ones. The table below lists some of the more prominent and well-established and supported. A more

comprehensive list is maintained in the Wikipedia entry for Satisfiability Modulo Theories [65].

Solver License Website

Alt-Ergo CeCILL-C alt-ergo.ocamlpro.com

Supported theories: uninterpreted functions, linear integer and real arithmetic, nonlinear arithmetic, polymorphic arrays,

bit-vectors, records, enumerated datatypes, ACsymbols, quantifiers

Barcelogic Proprietary www.lsi.upc.edu/˜oliveras/bclt-main.html

Supported theories: uninterpreted functions, integer and real difference logic, linear integer and real arithmetic

Boolector GPLv3 fmv.jku.at/boolector

Supported theories: arrays, bit-vectors

CVC4 BSD cvc4.cs.nyu.edu

Supported theories: uninterpreted functions, integer and real difference logic, linear integer and real arithmetic, arrays,

bit-vectors, datatypes, strings, quantifiers

MathSAT Proprietary mathsat.fbk.eu

Supported theories: uninterpreted functions, integer and real difference logic, linear integer and real arithmetic, arrays,

bit-vectors, floating point arithmetic

OpenSMT GPLv3 verify.inf.unisi.ch/opensmt.html

Supported theories: uninterpreted functions, real and integer difference logic, linear real arithmetic, bit-vectors

SMTInterpol LGPLv3 ultimate.informatik.uni-freiburg.de/smtinterpol

Supported theories: uninterpreted functions, linear integer and real arithmetic

SONOLAR Proprietary http://www.informatik.uni-bremen.de/˜florian/sonolar

Supported theories: bit-vectors, floating-point arithmetic

STP MIT sites.google.com/site/stpfastprover

Supported theories: arrays, bit-vectors

veriT BSD www.verit-solver.org

Supported theories: uninterpreted functions, integer and real difference logic, quantifiers

Yices Proprietary yices.csl.sri.com

Supported theories: uninterpreted functions, integer and real difference logic, linear integer and real arithmetic, arrays,

bit-vectors

Z3 MSR-LA z3.codeplex.com

Supported theories: uninterpreted functions, integer and real difference logic, linear integer and real arithmetic, nonlinear

arithmetic, arrays, bit-vectors, datatypes, floating point arithmetic, quantifiers

http://alt-ergo.ocamlpro.com/
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://fmv.jku.at/boolector/index.html
http://cvc4.cs.nyu.edu/
http://mathsat.fbk.eu/
http://verify.inf.unisi.ch/opensmt.html
http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://www.informatik.uni-bremen.de/~florian/sonolar/
http://sites.google.com/site/stpfastprover/
http://www.verit-solver.org/
http://yices.csl.sri.com/
http://z3.codeplex.com/
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