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Abstract

This course will be a whirlwind tour through representation theory, a major branch

of modern algebra. We being by considering the symmetry groups of the Platonic solids,

which leads naturally to the notion of a reflection group and its associated root system.

The classification of these reflection groups gives us our first examples of quivers (= direct

graphs). Though easy to define, we’ll see that the representation theory associated to quivers

is very rich. We will use quivers to illustrate the key concepts, ideas and problems that

appear throughout representation theory. Coming full circle, the course will culminate with

the beautiful theorem by Gabriel, classifying the quivers of finite type in terms of the root

systems of reflection groups. The ultimate goal of the course is to give students a glimpse of

the beauty and unity of this field of research, which is today very active in the U.K.
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Introduction

This series of four lectures is designed to be a crash course in representation theory; the only back-

ground knowledge assumed is basic group theory and linear algebra. We start with the ancient

Greeks and their study of the Platonic solids and end up finally with Gabriel’s theorem classifying

quivers with finitely many indecomposable representations. At first glance, the topics covered -

the Platonic solids, finite reflection groups and quiver, seem completely unrelated. But one of

the key messages of the lectures is that there is in fact a deep connection between these objects.

Underlying each of their classifications is a certain graph called a Coxeter/Euler graph, and the

corresponding positive definite symmetric form. Remarkably, these graphs appear in several other

areas of mathematics; in section 4.6 I have listed all those that I know, but I’m certain that there

are several more.

As the name suggests, the Platonic solids were well-known to the ancient Greeks. There seems

to some contention as to who first discovered them (some attribute this to Pythagoras, others to

Theaetetus) but they were popularized by Plato, who associated to each of the first four solids

one of the four elements, “fundamental building blocks” of the universe,

tetrahedron↔ fire

cube↔ earth

octahedron↔ air

icosahedron↔ water

The dodecahedron was meant to represent the whole universe. Later the German astronomer

Johannes Kepler based his model of the solar system on the Platonic solids. For a given solid P

there is a unique sphere P ⊂ S such that all the vertices of P lie on S. There is a second, unique,

sphere S ′ ⊂ P such that the midpoint of each face of P lies in S ′. By nesting the Platonic solids

P1 ⊂ P2 ⊂ · · · ⊂ P5 in the correct way, we get six concentric spheres S1 ⊂ · · · ⊂ S6. Each of these

six spheres was meant to correspond to the orbit of the six planets that were known at that time,



so that each solid separates a pair of planets,

octahedron↔ Mercury and Venus

icosahedron↔ Venus and Earth

dodecahedron↔ Earth and Mars

tetrahedron↔ Mars and Jupiter

cube↔ Jupiter and Saturn;

see Figure 1.1. Though we know today that this model can’t possibly have any real meaning, it is

remarkable how close the fit actually was. In the first lecture we will focus on the symmetries of

the Platonic solids. Due to the mysterious duality that the solids posses, these symmetry groups

are relatively easy to calculate. Remarkably, these groups are all reflection groups i.e. they are

generated by reflections.

In the second lecture, we study in more detail this notion of a reflection group. It is a classical

result that one can classify all finite reflection groups. This classification result will be at the heart

of the lecture. In order to state it and outline a proof, we will be forced to introduce Coxeter

graphs and their corresponding symmetric bilinear forms. The fact that one can classify finite

reflection groups relies on the fact that one can classify those Coxeter graphs that are positive

definite. To go between reflection groups and Coxeter graphs, one needs the notion of a root

system. This is a very natural object that one can associate to a reflection group, but it still

contains all the information needed to reconstruct the group. For a given root system, it is easy

to work out what the corresponding Coxeter graph is.

In the third lecture we leave behind Platonic solids and reflection groups and turn instead to

quivers. A quiver is simply a directed graph. These were first introduced by Gabriel to encode

in a very simple, combinatorial way, very difficult problems in linear algebra. This gives rise to

the notion of a representation of a quiver. Though the definition is very simple, representations

can turn out to have very complex structures. As such they are still the focus of much research

by mathematicians today. Quivers are also the ideal introduction to representation theory - this

major branch of algebra aims to understand objects, whether rings, groups, Lie algebras,.... by

understanding how they act on vector spaces. Due to their combinatorial natural, Quiver represen-

tations provide a large source of interesting examples of representations and are useful in testing
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conjectures in the theory. They also provide us with the ideal setting in which to introduce the

basic concepts of the subject such as a simple or indecomposable representation, and the notion

of semi-simplicity.

In the final lecture we will focus on one of the fundamental results in the theory of quiver

representations, that of Gabriel’s Theorem. It’s easy to see that in order to classify all the rep-

resentations of a quiver it suffices to classify those that are indecomposable i.e. those that we

cannot decompose into smaller representations. Therefore it is natural to ask for which quiv-

ers might we expect there to be only finitely many indecomposable representations. Gabriel’s

Theorem provides a complete answer to this question - it is precisely those quivers whose un-

derlying graph is a positive definite Euler graph. This provides us (amazingly!) with a link to

the second lecture on reflections groups, since the positive definite Euler graphs are exactly the

positive definite Coxeter graphs with at most one edge between any two vertices. Not only that,

Gabriel showed that there is a bijection between the indecomposables of the quiver and the roots

in the corresponding root system. Thus, a concept introduced in the theory of reflection groups

appears mysteriously in answering one of the basic questions in quiver representations. In fact,

it turns out that root systems play an important role throughout the representations theory of

quivers. This is exemplified by Kac’s Theorem, which is a vast generalization of Gabriel’s Theorem.

At the end of each section I have listed several sources where you can learn more about the

topic under consideration. I hope the lecture notes will persuade you to dip into some of these.

The reward for those of you who do so is the revelation of a beautiful, rich world which touches on

many of the cornerstones of mathematics, such as algebraic geometry, topology, group theory and,

of course, representation theory. Here I would just like to mention the survey [19] by Slodowy and

the thesis [21] by van Hoboken, which are both excellent expositions of the connection between

Platonic solids, finite subgroups of SU(2) and Lie algebras of simply laced type.
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Figure 1: The five Platonic solids.

1 The Platonic solids

In the first lecture, we travel all the way back to ancient Greece, and explore the Platonic solids

that so fascinated the Greeks at that time (so much so that Plato saw them as the very building

blocks of the universe).

1.1 The five regular solids

A convex regular polyhedron in R3 is called a Platonic solid or regular solid. Here, a polyhedron

is a region bounded by planes in R3. It has two-dimensional faces which meet in one-dimensional

edges, which meet in vertices. We shall assume that a polyhedron is bounded. This implies that

it is compact as a topological space. We say that a polyhedron is regular if all its faces, edges

and vertices are equal. That is, all the faces meet at the same angle and that the same number of

edges meet at the same angles at each vertex. In particular, this implies that all the faces are the

same regular polygon.

As the name suggests, the Platonic solids were popularized by Plato, therefore they are also

know as the Platonic solids. In Figure 1.1, you’ll see some Platonic solids. The Schläfli symbol

symbol of a Platonic solid is {p, q}, where p is the number of faces meeting at a given vertex, each

of which is a q-gon. A moment’s thought should convince you that there is at most one Platonic

solid with Schläfli symbol {p, q}.

Theorem 1.1. The five polygons of Figure 1.1 are the only regular polygons.

Proof. Let {p, q} be the Schläfli symbol of the polygon. Then we have p faces (each a regular

q-gon) meeting at every vertex. The angle at the corner of the q-gon is (q − 2)π/q and since the

polyhedron is convex we must have p×(q−2)π/q < 2π, which implies that (p−2)(q−2) < 4. The
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only positive integers satisfying this are (q, p) = (3, 3), (4, 3), (3, 4), (5, 3), (3, 5), corresponding to

the above five.

Here’s some more information about them:

Polyhedron Vertices V Edges E Faces F Schläfli symbol

Tetrahedron T 4 6 4 {3, 3}

Hexahedron H 8 12 6 {4, 3}

Octahedron O 6 12 8 {3, 4}

Dodecahedron D 20 30 12 {5, 3}

Icosahedron I 12 30 20 {3, 5}

If you’re curious to know, “hedron” is derived from the Greek for face. From now on, we’ll call

the Hexahedron the “cube” for simplicity.

1.2 Topology

Notice that the numbers (V,E, F ) satisfy a remarkable property, namely we always have

V − E + F = 2.

Euler showed that this equation actually holds for any convex polyhedron in R3. This is because

V − E + F is a topological property of the shapes. Topologically, any convex polyhedron is

homeomorphic to the 3-sphere. Thus, the quantity V − E + F will always equal 2, which is the

Euler characteristic of the 3-sphere. More generally, for any bounded, closed polyhedron P in R3,
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Figure 2: Kepler’s model of the solar system, based on the five Platonic solids.
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we have

V − E + F = 2− 2g, (1)

where g is the genus of P ; this is the number of “holes” in P .

Exercise 1.2. Check that equation (1) holds for the Platonic solids and for the torus with trian-

gulation

where one should glue together the two edges labeled by a single arrow and similarly for the two

arrows labeled by a double arrow.

1.3 Duality

The Platonic solids possess a beautiful duality - take a solid P and construct a new polyhedron

Q within P as follows. For each face of P put a vertex at the centre of this face. These will be

the vertices of Q. If two faces of P share a common edge then draw a new edge from the vertex

at the centre of one face to the vertex at the centre of the other face. These will be the edges of

Q. Notice that there are bijections

{ faces of P } 1:1←→ { vertices of Q },

{ edges of P } 1:1←→ { edges of Q }.

Finally, for each vertex of P , form a face of Q by filling in the polygon bounded by all the edges

of Q that correspond to the edges of P meeting at that vertex. This gives the final bijection,

{ vertices of P } 1:1←→ { faces of Q }.

We say that Q is the dual of P . Repeating, the dual of Q is just a smaller copy of P sitting in Q

(sitting in P ...).
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Exercise 1.3. If the Schläfli symbol of P is {p, q}, check that the Schläfli symbol of its dual Q is

{q, p}.

Figure 1.3 shows the dual Platonic solids. We see that the tetrahedron is self-dual, the cube

and the octahedron are dual to one another, as are the dodecahedron and icosahedron.

1.4 Symmetries

In order to describe the symmetry groups of the Platonic solids, we begin with some general

observations. The group of symmetries of P will be denoted W (P ), a subgroup of GL(Rn).

1. If V is the set of vertices of P then the symmetries of P permute the elements in V . This

defines a homomorphism W (P ) → Sym(V ). It is easy to see that this is injective. Since

Sym(V ) is a finite group, this implies that W (P ) is a finite group.

2. W (P ) is a finite subgroup of O(3,R); see Proposition 5.3 of the appendix.

3. This implies that det(g) = ±1 for each g ∈ W (P ). In the case det(g) = 1, g ∈ SO(3,R) is

a rotation of R3. We include a proof of this fact in section 5.2 of the appendix.

4. If the map −IdR3 belongs to W (P ) then notice that det(g) = −1 if and only if det(−g) = 1.

This implies that W (P ) = W0(P )×{±IdR3}, where W0(P ) = W (P )∩SO(3,R) is the group

of rotational symmetries of P .

5. Dual solids have the same symmetry group.

Since there are only three dual pairs, (5) means that there are only three symmetry groups to

compute.

The symmetries of the tetrahedron

The tetrahedron T has 4 vertices. Therefore we have an embedding W (T) ↪→ S4, where S4 is the

symmetric group on four letters. However, it is clear that for any pair of vertices {a, b} there is a

reflection of T that swaps a and b and fixes the other two vertices. Since S4 is generated by such

transpositions, this implies that the embedding is an isomorphism. Notice that this also implies

that W (T) is generated by reflections.
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Figure 3: Dual pairs of Platonic solids.
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The symmetries of the cube/octahedron

We compute the symmetries of the cube. In this case −IdR3 acts on H. Therefore, it suffices to

describe the rotational symmetries of the cube. Any rotation of H will have an axis of rotation.

(A) The axis of rotation passes through the centre of a pair of opposite faces. For a given pair

of faces, there are three non-trivial rotations, giving 3× 3 = 9 non-trivial rotations.

(B) The axis of rotation passes through the centre of a pair of opposite edges. For a given pair

of edges, there is only one non-trivial rotation, giving 12/2 = 6 non-trivial rotations in total.

(C) The axis of rotation passes through the centre of a pair of opposite vertices. For a given pair

of vertices, there are two non-trivial rotations, giving 2× (8/2) = 8 non-trivial rotations.

Hence, if we remember to include the identity, we have

|W0(P )| = 1 + 9 + 6 + 8 = 24, |W (P )| = 48.

In fact, W0(P ) is also isomorphic to S4. To see this, let D = {`1, . . . , `4} be the set of lines

connecting opposite vertices in the cube. Then W0(P ) permutes the elements of D and we get a

morphism W0(P )→ S4, which one can check is an isomorphism.

The symmetries of the dodecahedron/icosahedron

We compute the symmetries of the dodecahedron. As before, −IdR3 acts on D. Therefore, it

suffices to describe the rotational symmetries of the dodecahedron, just as we did for the cube.

Any rotation of D will have an axis of rotation.

(A) The axis of rotation passes through the centre of a pair of opposite faces. For a given pair

of faces, there are four non-trivial rotations, giving 4× (12/2) = 24 non-trivial rotations.

(B) The axis of rotation passes through the centre of a pair of opposite edges. For a given pair of

edges, there is only one non-trivial rotation, giving 30/2 = 15 non-trivial rotations in total.

(C) The axis of rotation passes through the centre of a pair of opposite vertices. For a given pair

of vertices, there are two non-trivial rotations, giving 2× (20/2) = 20 non-trivial rotations.

Hence, if we remember to include the identity, we have

|W0(P )| = 1 + 24 + 15 + 20 = 60, |W (P )| = 120.
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In fact, as abstract groups, one can show that W0(P ) is isomorphic to the alternating group A5;

see [6, page 50].

1.5 Reflection groups

The symmetry groups of the Platonic solids all have one key property in common. They are all

examples of finite reflection groups. We denote by O(n,R) the group of orthogonal n×n matrices

{A | AAT = 1}. Equivalently, this is the group of all angle and length preserving transformations

of Rn i.e.

g ∈ O(3,R) ⇔ (g · x, g · y) = (x, y) ∀ x, y ∈ Rn.

A reflection on Rn is a linear map s ∈ O(n,R) such that

1. dim FixRn(s) = n− 1;

2. s2 = id.

Here FixRn(s) = {x ∈ Rn | s(x) = x} is a vector subspace of Rn.

Definition 1.4. A finite subgroup W of GL(Rn) is said to be a reflection group if it is generated

by a set S = {s1, . . . , sk} of Rn. That is, W is the smallest subgroup of GL(Rn) containing all the

reflections in S.

Notice that if W is a reflection group then W ⊂ O(n,R) i.e. each element in W preserves both

angles and lengths.

Exercise 1.5. Using the fact that g ∈ W (P ) is a reflection if and only if it has one eigenvalue equal

to −1 and two eigenvalues equal to 1, count the number of reflections in W (H) and W (D).

We finish the lecture with a key example of a reflection group. Generalizing the tetrahedron,

the n-simplex is defined to be

∆n =
{

(t1, . . . , tn+1) ∈ Rn+1 | t1 + · · ·+ tn+1 = 1, ti ≥ 0 ∀ i
}
,

so that ∆2 is the regular triangle and ∆3 is the tetrahedron. The vertices of ∆n are

e1 = (1, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . ,

of which there are n + 1 in total. Therefore the action of the symmetry group W (∆n) of the n-

simplex on its set of vertices defines an embedding W (∆n) ↪→ Sn+1. On the other hand, consider
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the transformation si,j of Rn which swaps the ith and jth coordinate. Clearly s2
i,j = 1 and the

subspace Fix(si,j) has basis {tk | k 6= i, j} ∪ {ti + tj} and hence is (n− 1)-dimensional. Thus, si,j

is a reflection. We see that si,j just swaps the ith and jth vertex of ∆n i.e. the image of si,j in

Sn+1 is the transposition (i, j). Hence, we have shown

Proposition 1.6. The symmetry group W (∆n) is a reflection group, isomorphic to the symmetric

group Sn+1.

1.6 Remarks

The classical reference on Platonic solids and their symmetry groups has to be the book Reg-

ular Polytopes, by H.S.M. Coxeter [6]. The lecture notes [19] by Slodowy are also a fantastic

introduction to these classical objects, but from the modern point of view. Finally, I should

mention the superb thesis [21] by van Hoboken, where I first learned about these things. See

http://www.math.ucr.edu/home/baez/FUN.html for a great deal more on the Platonic solids

and much else besides.
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2 Reflection groups and root systems

Recall that we ended the first lecture with the definition of a (finite) reflection group: a finite

subgroup W of GL(Rn) is said to be a reflection group if it is generated by a set S = {s1, . . . , sk}
of reflections of Rn. That is, si : Rn → Rn is a orthogonal linear map fixing a hyperplane H ⊂ Rn

and s2
i = 1. This means that

si(x) = x− 2(x, α)

(α, α)
α, (2)

for some (in fact any) vector α perpendicular to H. We’ll call α the root of si and write si = sα.

Our presentation in this lecture is based on the book [12] by Humphreys.

2.1 Root systems

In order to classify the finite reflection groups, we introduce the notion of a root system. We fix

a real vector space Rn with a positive definite symmetric bilinear form (−,−).

Exercise 2.1. Using equation (2) show that (w · u, v) = (u,w−1 · v) for all u, v ∈ Rn and w ∈ W .

Hint: first check for w = s, a reflection, then use the fact that every element in W can be written

as a product of reflections.

For simplicity, we will assume throughout that (Rn)W = {v ∈ Rn | w · v = v, ∀ w ∈ W} equals

{0}. Otherwise, we simply replace Rn by the orthogonal compliment V = {v ∈ Rn | (v, u) =

0, ∀ u ∈ (Rn)W} to (Rn)W in Rn. The subspace V is W -stable.

Definition 2.2. A finite subset R of Rn is called a root system if

(R0) R spans Rn.

(R1) If α ∈ R then the only multiplies of α in R are ±α.

(R2) If α ∈ R then the reflection sα maps R to itself.

The reflection groupW (R) associated to R is the subgroup ofGL(Rn) generated by all {sα | α ∈
R}. We give a couple of examples of root systems and the corresponding reflection groups.

Example 2.3. The dihedral groups. The dihedral group I2(m) of order 2m is the group of sym-

metries of the m-gon in R2. Taking every root to have length one, the corresponding root system

is

R =

{(
cos

2kπ

m
, sin

2kπ

m

)
| k = 0, 1, . . . ,m− 1

}
.

When m = 6, we get:
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α

β

Here ∆ = {α, β} is a set of simple roots for R.

Example 2.4. The symmetric group. Let

E =

{
x =

n+1∑
i=1

xiεi ∈ Rn+1 |
n+1∑
i=1

xi = 0

}
' Rn,

where {ε1, . . . , εn+1} is the standard basis of Rn+1 with (εi, εj) = δi,j. Let R = {εi − εj | 1 ≤ i 6=
j ≤ n+ 1}. Then, it is an exercise to check that R is a root system for Sn.

Lemma 2.5. Let R be a root system. Then the reflection group W (R) of R is finite.

Proof. By axiom (R2) of a root system every sα maps the finite set R into itself. Therefore, there

is a group homomorphism W → SN , where N = |R|. This map is injective: if w ∈ W such that

its action on R is trivial then, since R spas Rn by (R0), w acts trivially on Rn i.e. w = 1.

Choose a vector v ∈ Rn such that (v, α) 6= 0 for all α ∈ R. Then either α ∈ R+ := {α ∈
R | (v, α) > 0} or α ∈ R− := −R+ i.e. we get a partition R = R+ tR− into positive and negative

roots.

Definition 2.6. Let R = R+ ∪R− be a root system, partitioned into positive and negative roots.

A set of simple roots for R is a subset ∆ ⊂ R+ such that

(S1) ∆ is a basis of Rn.

(S2) Each β ∈ R+ can be written as β =
∑

α∈∆ mαα, where mα ≥ 0 for all α.
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It is also possible to define a set of simple roots, without first choosing a partition of R into

positive and negative roots. Replace the axiom (S2) by

(S2’) Each β ∈ R can be written as β =
∑

α∈∆ mαα, where all mα ≥ 0 or all mα ≤ 0.

Then a set of simple roots automatically defines a partition of R; a root β is positive if and only

if all mα ≥ 0. The problem with the above definition is that it is not at all clear that a given root

system contains a set of simple roots. However, one can show:

Theorem 2.7. Let R be a root system.

1. There exists a set ∆ of simple roots in R.

2. The group W is generated by S := {sα | α ∈ ∆}.

3. For any two sets of simple roots ∆,∆′, there exists w ∈ W such that w(∆) = ∆′.

4. For α, β ∈ ∆, α 6= β we have (α, β) ≤ 0.

In fact the reflection group W acts simply transitively on the collections of all sets of simple

roots. The construction of all ∆’s is quite easy, the difficulty is in showing that the sets constructed

are indeed sets of simple roots and that the properties of Theorem 2.7 are satisfied.

Given a set of simple reflections, we call the corresponding set of reflections S a set of simple

reflections for W . Now that we have a choice of generators for W , we can ask for a presentation

of W i.e. a list of all relations satisfied by the reflections in S.

Theorem 2.8. Given a set of simple reflections S, the group W has a presentation

W = 〈sα : α ∈ ∆ | (sαsβ)m(α,β) = 1 where the integers m(α, β) (3)

satisfy m(α, α) = 1, m(α, β) ≥ 2 for α 6= β. 〉. (4)

It’s natural to ask how our presentation would change if we changed the set of generators. An

arbitrary presentation might look quite different. However, if we ask that our generating set S

consists solely of reflections and |S| is as small as possible, then S corresponds to a set of simple

reflections. Moreover, Theorem 2.7 (3) implies that the presentation we get from two different

choices of simple roots is the same (up to a relabeling of the generators).

Remark 2.9. Groups that have a presentation as in (4) are called Coxeter groups since they were

extensively studied by him. We will see below the classification of finite Coxeter groups. However,

there is also a whole zoo of infinite Coxeter groups out there, which play a key role in several areas

of mathematics, such as geometric group theory.
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Example 2.10. If W is the dihedral group I2(m), then we can deduce from example 2.3 that

I2(m) = 〈sα, sβ | s2
α = s2

β = (sαsβ)m = 1〉.

Similarly, for the symmetric group, example 2.4 implies that

Sn = 〈s1, . . . , sn−1 | s2
i = 1, (sisj)

2 = 1, ∀|i− j| > 1, (sisi+1)3 = 1, i = 1, . . . , n− 2〉

The relations (sisj)
2 = 1 and (sisi+1)3 = 1 can be rewritten as

sisj = sjsi, ∀|i− j| > 1, sisi+1si = si+1sisi+1, ∀ i = 1, . . . , n− 2.

They are called the braid relations since they are the defining relations of the braid group Bn, of

which Sn is a quotient.

2.2 Coxeter graphs and symmetric forms

So far we have used the notion of root system and simple roots to show that a finite reflection

group has a very particular presentation. Our approach to classifying these groups will be to try

and classify the finite groups that have these particular presentations. In order to do this, we need

some background on symmetric forms and symmetric matrices.

A symmetric bilinear form (−,−) on Rn is the same1 as a real n × n-matrix A such that

AT = A i.e. A is a symmetric matrix. Explicitly, given a form (−,−), we fix a basis ε1, . . . , εn of

Rn and set

ai,j := (εi, εj),

so that (v, w) = vTAw for all v, w ∈ Rn.

Definition 2.11. A symmetric real matrix A is said to be

• positive definite if xTAx > 0 for all 0 6= x ∈ Rn.

• positive semi-definite if xTAx ≥ 0 for all x ∈ Rn.

Before we relate reflection groups to symmetric matrices, we will first construct a Coxeter

graph out of W . Then there is a simple algorithm to associate to the Coxeter graph a symmetric

bilinear form (or rather, the algorithm shows that the Coxeter graph “remembers” the fact that

1Rather, it is the same as a real symmetric matrix once a basis of Rn has been chosen.
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it came from a reflection group acting on Rn, with its standard form). So we fix a set of simple

roots ∆ for R. The vertices of the Coxeter graph Γ are labeled by the corresponding simple roots

/ simple reflections. Associated to any pair α, β ∈ ∆, we have the integer m(α, β) ≥ 2, as in

Theorem 2.8. If m(α, β) = 2 then there is no edge between α and β. Otherwise, we add an edge

between α and β, decorated with the number m(α, β). Since m(α, β) = 3 occurs frequently, we

don’t bother to label the edge in this case.

Example 2.12. Going back to our examples of the dihedral and symmetric groups, example 2.10

implies that the Coxeter graph for I2(m) is
m

. For the symmetric group Sn+1, we get

the Coxeter group of type An,

with n vertices.

In general a Coxeter graph is a finite graph Γ with at most one edge between two vertices, no

loops (i.e. an edge from a vertex to itself) and an integer m ≥ 3 labeling each edge. Next, if Γ has

n vertices, then we associated to it a symmetric bilinear form on Rn, or equivalently a symmetric

real matrix A. Let A = (aα,β), where aα,α = 1 and

aα,β = − cos
π

m(α, β)
, ∀ α 6= β.

Proposition 2.13. Assume that the real symmetric matrix A comes from a finite reflection group

as above. Then A is positive definite.

Proof. Let (−,−) denote the usual symmetric bilinear form on Rn such that the usual basis

{ε1, . . . , εn} is orthonormal. Then it is clearly positive definite. The matrix A doesn’t depend of

the length of the simple roots so we may assume without loss of generality that ||α|| = 1 for all

α ∈ ∆. As noted in section 2.5 below, (α, β) = ||α||||β|| cos θ, where θ is the angle between α and

β. Theorem 2.7 (4) implies that θ ≥ π. We want to express θ in terms of m(α, β). The key is the

fact that sαsβ is rotation by twice θ (see the exercise sheet). This implies that θ = π
(

1
m(α,β)

+ 1
)

and hence

(α, β) = cos π

(
1

m(α, β)
+ 1

)
= − cos

π

m(α, β)
.

This means that αTAβ = (α, β) for all α, β ∈ ∆ i.e. A is just the standard form (−,−) expressed

in the basis of Rn given by the simple roots ∆. In particular, it is positive definite.

What we will see from the classification is that the finite reflection groups, up to isomorphism,

are in bijection with the Coxeter graphs whose associated symmetric matrix A is positive definite.
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For brevity, we will say that Γ is a positive (semi-)definite Coxeter graph if the corresponding

matrix A is positive (semi-)definite.

Exercise 2.14. Show that the symmetric matrix(
1 − cos π

m

− cos π
m

1

)

corresponding to the Coxeter graph
m

is positive definite.

2.3 The classification

There are two steps in the classification of positive definite Coxeter graphs. First, we guess all

positive definite and semi-definite graphs. A direct calculation shows whether a particular graph

is positive (semi-)definite. Then we use this list, together with a key result from linear algebra to

prove that there are no others.

The proof of the following proposition is a direct calculation. By induction, one calculates the

eigenvalues of the associated symmetric matrix A (give it a go!).

Proposition 2.15. The following Coxeter graphs are positive definite.

An BCn
4

Dn

E6 E7

E8 F4
4

G2
6

H3
5

H4
5

I2(m)
m

Similarly, one checks by a direct calculation:

Proposition 2.16. The following Coxeter graphs are all positive semi-definite.
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Ãn

B̃n
4

C̃n
4 4

D̃n

Ẽ6 Ẽ7

Ẽ8 F̃4

4
G̃2

6

We recall the key “Spectral Theorem for real symmetric matrices”. A proof of the theorem

can be found in the appendix.

Theorem 2.17. Let A be a real valued symmetric matrix.

1. The eigenvalues of A are real.

2. There exists an orthogonal matrix g ∈ O(n,R) such that gAgT is diagonal.

Example 2.18. The spectral theorem for real symmetric matrices implies that a real symmetric

matrix is positive (semi-)definite if and only if all its eigenvalues are > 0 (≥ 0). As an example,

consider the Coxeter graph of type F̃4. The corresponding symmetric matrix is

A =


1 −1

2
0 0 0

−1
2

1 −1
2

0 0

0 −1
2

1 −1√
2

0

0 0 −1√
2

1 −1
2

0 0 0 −1
2

1

 .

A rather lengthy computation shows that the eigenvalues of A are 0, 1
2
, 1, 3

2
and 2. Therefore F̃4

is positive semi-definite.
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A matrix A is said to be decomposable if, after a permutation of rows and columns, it is the

sum of two blocks

A =

(
A1 0

0 A2

)
,

otherwise we say that A is indecomposable. We will use the spectral theorem to prove the following

result in linear algebra. The proof of the following key proposition is based on Theorem 5.1. The

proof can be found on [12, page 35].

Proposition 2.19. Let A be a symmetric real matrix which is

(a) positive semi-definite,

(b) indecomposable,

(c) satisfies ai,j ≤ 0 for all i 6= j.

Then the radical

radA = {v ∈ Rn | vTAv = 0}

of A equals the kernel of A, and is one-dimensional. Moreover, the smallest eigenvalue of A

has multiplicity one, and the corresponding eigenvector can be chosen to have all strictly positive

coordinates.

Corollary 2.20. If Γ is a connected semi-positive definite Coxeter graph, then every proper sub-

graph is a positive definite Coxeter graph.

Proof. If Γ is connected then the matrix A is indecomposable and clearly satisfies the other

conditions of Proposition 2.19. Let Γ′ be a subgraph of Γ and A′ the corresponding symmetric

matrix. If |Γ′| = k ≤ |Γ| = n, then A′ is a k × k matrix. Then m′(α, β) ≤ m(α, β), which implies

that a′α,β = − cos π
m′(α,β)

≥ aα,β = − cos π
m(α,β)

= aα,β. We will assume that Γ′ is not positive

definite (in particular, Γ′ is a proper subgraph of then there exists some non-zero vector v ∈ Rk

such that vTA′v ≤ 0. If v′ = (|v1|, . . . , |vk|, 0, . . . , 0) then

0 ≤
∑
α,β

aα,β|vα||vβ| ≤
∑
α,β

a′α,β|vα||vβ|

≤
∑
α,β

a′α,βvαvβ ≤ 0.

Here the sum is over all α, β ≤ k and we have used the fact that aα,β ≤ 0 if α 6= β. Therefore

the inequalities are equalities. Moreover, we see that (v′)TAv′ = 0. Therefore Proposition 2.19
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implies that v′ is in the kernel of A. But again, Proposition 2.19 implies that k = n and each vi is

non-zero. However, the other inequalities now imply that a′α,β = aα,β for all α, β i.e. A′ = A and

hence Γ′ = Γ, contradicting the fact Γ′ is a proper subgraph of Γ.

Theorem 2.21. Let Γ be a finite connected graph. The positive definite Coxeter forms listed in

Proposition 2.15 constitute all such forms.

Proof. The key to the proof of this theorem is Corollary 2.20. By Corollary 2.20, if we are given a

positive semi-definite graph then every proper graph is positive definite. We will show that every

positive semi-definite graph Γ is contained in the list given in Proposition 2.16. It will then follow

that the list given in Proposition 2.15 contains all positive definite Coxeter graphs.

We will need the following fact. An easy calculation of eigenvalues shows that

Z4
5

Z5
5

are not positive (semi-)definite graphs.

So we assume that Γ is a positive semi-definite Coxeter graph. Recall that the valence of a

vertex is the number of edges leaving the vertex.

(a) Let us consider first cycles in Γ. If Γ contains a cycle of length at least three, then it contains

Ãn for some n. Hence it must equal Ãn. So we assume Γ contains at most 2-cycles.

(b) If Γ contains a pair of vertices with ≥ 5 edges (or in our presentation, this is an edge labeled

by m ≥ 7) between them then the fact that it cannot contain G̃2 implies that Γ = I2(m)

for some m. But then it is not positive semi-define, so there are at most 4 edges between

vertices.

(c) If Γ contains an edge of weight 6, then there must be at least three vertices in Γ or else

Γ = I2(6). But if it contains at least three vertices it contains a copy of G̃2 (and must equal

G̃2). Hence we may assume that every edge of Γ has weight at most 5.

(d) Assume that Γ has an edge of weight 5. If it has only three vertices then the other edge

cannot be of weight 4 since Γ would contain a copy of B̃2. So this edge must have weight 3.

But then Γ = H3 is positive definite. Thus, Γ must have at least 4 vertices.

(e) The fact that Γ cannot contain Z4 implies that the unweighted graph is of type A such that

5 labels the left most edge.
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(f) The fact that Γ cannot contain Z5 implies that Γ has exactly 4 vertices.

(h) The fact that Γ cannot contain C̃3 implies that Γ must in fact be H4. But then Γ is positive

definite. So we conclude that there are no positive semi-define Coxeter graphs with an edge

of weight 5.

(i) Thus, we are reduced to the situation where every edge of Γ has weight at most 4. If Γ

contains at least two edges of weight 4 then it contains C̃n. So we may assume that Γ

contains at most one edge of weight 4.

(j) If the unweighted graph of Γ contains a vertex of valence at least 3 then it contains a copy

of B̃n. Therefore we may assume that the unweighted graph of Γ is of type A.

(k) If Γ has at least 5 vertices then it contains a copy of F̃4 or is of type BCn, so it must equal

F̃4.

(l) If Γ contains fewer than 5 vertices then it is either F4 or type BCn i.e. it is not positive

semi-definite. Hence we are finally reduced to the case where every edge has weight 3.

(m) If Γ has a vertex of valency at least 4 then it contains a copy of D̃4. So we may assume that

each vertex has valency at most 3.

(n) If it contains at least two vertices of valency 3 then it contains a copy of D̃n. Therefore we

may assume it contains exactly one vertex of valency 3.

(o) Then Γ = T (p, q, r) is the spoke with arms of length p, q, r (so that Γ has p+ q + r edges in

total).

(p) At least one of p, q, r is equal to 1 otherwise Γ contains a copy of Ẽ6 or is of positive definite

type. So without loss of generality, p = 1.

(p) If q, r ≥ 3 then Γ contains a copy of Ẽ7. Therefore we may assume without loss of generality

that q = 2.

(q) If r ≥ 4 then Γ contains a copy of Ẽ8, otherwise it is of positive definite type.

The fact that the positive definite graphs listed in Proposition 2.15 are all possible ones is proved

in a similar fashion, but the proof is much simpler. We leave it to the interested reader.
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We haven’t quite completed the classification of finite reflection groups. One still has to

construct an explicit reflection group for each of the positive definite Coxeter graphs of Proposition

2.15. For the infinite series An,BCn and Dn this is straight-forward (we have seen type A already,

type BC corresponds to the hyperoctahedral group and D is the normal subgroup of BCn of index

2 consisting of all signed permutation matrices such that the product of the non-zero entries is

one), but the exceptional reflection groups of type E,F and H are rather difficult to construct. We

have actually seen the reflection group H3 already - this is a reflection group acting on R3, it is

none other than W (D), the symmetry group of the dodecahedron.

2.4 Crystallographic groups

Most reflection groups W have the additional property that they preserve a lattice L ⊂ Rn i.e.

sα(L) ⊂ L for all α ∈ ∆. Here a lattice is the Z-span Z · β1 + · · ·Z · βn of some basis {β1, . . . , βn}
of Rn. In this case we say that W is a crystallographic reflection group.

Lemma 2.22. If W is crystallographic then m(α, β) = 2, 3, 4 or 6 for all α 6= β.

Proof. Assume that W preserves a lattice L = Z·β1+· · ·Z·βn. Then, any element w ∈ W , written

as a matrix with respect to the basis {β1, . . . , βn} has trace in Z. Now, sαsβ is rotation by 2π
m(α,β)

(see exercise 3 (c)), hence Tr(sαsβ) = (n − 2) + 2 cos 2π
m(α,β)

which implies that cos 2π
m(α,β)

∈ 1
2
Z.

This forces m(α, β) = 2, 3, 4 or 6.

Based on this simple observation, it is natural to extend the definition of root system.

Definition 2.23. Let R be a root system. Then R is said to be crystallographic if, in addition to

axioms (R1) and (R2) of definition 2.2, we have

(R3) If α, β ∈ R then

nβ,α :=
2(α, β)

(α, α)

belongs to Z.

We can easily check from the classification of Theorem 2.21 which finite reflection groups have

the property that m(α, β) = 2, 3, 4 or 6 for all α 6= β. These are the ones of type A,BC,D,E,F

and G. Then, for each of these, one can explicitly construct a crystallographic root system. It

turns out that for all types, except BC, there is only one crystallographic root system of that type.

However, for the reflection group of type BC, there are two different crystallographic root systems,

which we call type B and type C. This construction implies:

Proposition 2.24. If W is crystallographic then it admits a crystallographic root system.
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β

α

A1 × A1 β

α

A2

Figure 4: The crystallographic root systems of type A1 × A1 and A2.

2.5 The angle between roots

Recall that if α, β ∈ E are non-zero vectors, then the angle θ between α and β can be calculated

using the cosine formula ||α|| · ||β|| cos θ = (α, β). Thus,

〈β, α〉 =
2(β, α)

(α, α)
= 2
||β||
||α||

cos θ,

and hence 〈β, α〉〈α, β〉 = 4 cos2 θ. If α, β ∈ R, then the fourth axiom implies that 4 cos2 θ is a

positive integer. Since 0 ≤ cos2 θ ≤ 1, we have 0 ≤ 〈β, α〉〈α, β〉 ≤ 4. Hence the only possible

values of 〈α, β〉 are:

〈β, α〉 〈α, β〉 θ

0 0 π
2

1 1 (?)

−1 −1 2π
3

1 2 (??)

−1 −2 3π
4

1 3 π
6

−1 −3 (? ? ?)

(5)

From this, it is possible to describe the rank two root systems. They are of type A1 × A1,A2,B2

and G2. See Figures 2.5 and 2.5. In each of the diagrams, {α, β} form a set of simple roots.

2.6 The surfer dude and E8

The crystallographic root system of type E8, which is by far the most complicated of all the root

systems, made world headlines in 2007. First, there was the story of how a group of mathematicians
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α

β

B2

α

β

G2

Figure 5: The crystallographic root systems of type B2 and G2. The long roots are coloured red
and the short roots are black.

had finally computed the “Kazhdan-Lusztig-Vogan polynomials” for the reflection group of E8 (the

group W (E8) has order 696729600), using some clever computer algorithms and a huge number of

computers; the computation was even picked up in the main-stream media. See

http://aimath.org/E8/

http://www.aimath.org/E8/computerdetails.html

For details on the mathematics involved, check out

http://www-math.sp2mi.univ-poitiers.fr/~maavl/pdf/Nieuw-Archief.pdf

too.

Then, a short while later, a paper appeared on the internet by Garrett Lisi, claiming that

the physical “Grand Unifying Theory of Everything” i.e. the ultimate theory of physics, which

would finally combine general relativity with quantum mechanics, could be constructed using the

representation theory of the Lie group of type E8. This outlandish idea actually seemed to have

some physical and mathematical merit and was intensely studied by both groups for a short while.

What made the story even more interesting was that Lisi was actually a professional surfer, based

in Hawaii. Though he had a PhD in physics, he had left academia for surfing. As far as I am

aware his idea didn’t work out in the end, but you can dig into this yourself, starting with

http://www.telegraph.co.uk/news/science/large-hadron-collider/3314456/

22



Surfer-dude-stuns-physicists-with-theory-of-everything.html

https://en.wikipedia.org/wiki/An_Exceptionally_Simple_Theory_of_Everything

http://www.scientificamerican.com/article/garrett-lisi-e8-theory/

Finally, the beautiful Figure 2.6 is the projection of the E8 root system (which lives in R8) onto

the plane.

2.7 Invariant Theory

Finite reflection groups appear in many situations in mathematics (and physics). One of the most

classical appearances is in invariant theory. Let W ⊂ GL(Rn) be a group. Then the group W also

acts naturally on the polynomial ring R[x1, . . . , xn] by (g·f)(a) = f(g−1·a) for all f ∈ R[x1, . . . , xn],

g ∈ W and a ∈ Rn. The ring R[x1, . . . , xn]W of functions invariant under W is a very complicated

ring in general. The study of these rings is called invariant theory. One of the cornerstones of the

theory is the Chevalley Theorem.

Theorem 2.25. Assume W ⊂ GL(Rn) is finite. Then R[x1, . . . , xn]W is a polynomial ring if and

only if W is a reflection group.

Example 2.26. We can make the symmetric group Sn act on Rn by permuting the coordinates.

We’ve seen that this makes Sn into a reflection group. Then R[x1, . . . , xn]Sn is the ring of sym-

metric polynomials. It is a classical result (attributed to Newton) that

R[x1, . . . , xn]Sn = R[e1, . . . , en],

where

er(x1, . . . , xn) =
∑

1≤i1<···<ir≤n

xi1 · · ·xir

is the rth elementary symmetric polynomial.

Exercise 2.27. Take Z2 = {1, s} acting on R2 by s · x1 = −x1 and s · x2 = −x2. Show that

R[x1, x2]Z2 is not a polynomial ring.

2.8 Lie algebras

Finite crystallographic reflection groups, described via root systems, first appeared in a (seemingly)

very different context.
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Figure 6: The root system of E8.
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At the opposite end of the spectrum to reflection groups are groups of continuous transforma-

tions; for instance, the group of all possible rotations of the plane. These groups have an additional

structure, namely the set of elements in the group is a smooth space or manifold and the multi-

plication map G×G→ G is a differentiable map (as is the inverse map). These groups are called

Lie groups, after the ground breaking work of the Norwegian mathematician Sophus Lie. These

groups are often very complicated as spaces. Therefore, in order to understand them better, the

standard approach is to replace them by a linearization - a vector space approximation of G, with

some additional structure that “remembers” some of the structure of the group. This additional

structure on the vector space g is a bilinear map [−,−] : g× g→ g that makes (g, [−,−]) into a

Lie algebra. Formally, the axioms of a Lie algebra are

(L1) The bracket [−,−] is anti-symmetric i.e.

[X, Y ] = −[Y,X], ∀ X, Y ∈ g.

(L2) The bracket [−,−] satisfies the Jacobi identity i.e.

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0, ∀ X, Y, Z ∈ g.

What does all this have to do with root systems? Lie algebras are “built up”, in a precise sense,

from the simple Lie algebras. Remarkably, one can associate, in a very natural way, to every

simple Lie algebra a crystallographic root system. It was shown by E. Cartan and Killing that a

Lie algebra is uniquely defined by its root system. Thus, the classification of simple Lie algebras

is equivalent to the classification of root systems.

The typical example of a Lie algebra is the space g = Matn(R) of all n×n real matricies. The

Lie bracket on g is the commutator bracket [A,B] := AB−BA. This is the Lie algebra associated

with the Lie group GL(Rn) of all invertible linear maps Rn → Rn; or in more down to earth terms,

the group of all invertible n× n real matricies.

Exercise 2.28. Check that (Matn(R), [−,−]) satisfies the axioms of a Lie algebra.

Lie groups and Lie algebras come under the general heading of Lie theory. It is a beautiful

and incredibly rich theory, which I would strongly recommend to everyone.

2.9 Remarks

There is a huge body of literature on the very classical subject of finite reflection groups and

general Coxeter groups. Two standard references are the books Reflection Groups and Coxeter
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Groups, by Humphreys [12], and Geometry of Coxeter groups, by Hiller [10]. A quick google will

reveal thousands more references.
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3 Quivers

In the finally two lectures, we turn instead to quivers and their representations. Though these

don’t seem to have anything to do with reflection groups, we’ll see in the final lecture on Gabriel’s

Theorem that reflection groups and their root systems play a key role in the representation theory

of quivers.

3.1 What is a quiver?

A quiver Q is simply a directed graph. That is, it is a collection Q0 = {e1, . . . , ek} of vertices and

a collection Q1 = {α1, . . . , α`} of arrows between vertices. In order to specify which two vertices

an arrow α goes between, we define a pair of functions h, t : Q1 → Q0 such that h(α) is the vertex

at the head of α and t(α) is the tail of α i.e. α is the arrow beginning at vertex t(α) and ending

at vertex h(α).

Example 3.1. Here are some examples of quivers.

e2

e1 e2 e1 e5 e3 e1

e4

α

α β

γ

α

δ

e1 e1 e2

α1

α2

···

αn

α

β

For instance, in the second example, Q0 = {e1, e2, e3, e4, e5}, Q1 = {α, β, γ, δ} and t(γ) = e3,

h(β) = e5 etc.

Remark 3.2. A quiver is the case, holdall, or tube that an archer uses to hold his/her arrows.

3.2 Representations

As representation theorists, we’re interested in representations of a quiver. A representation

M = {(Vi, ϕα) |i ∈ Q0, α ∈ Q1} is the data of a complex vector space Vi at each vertex i of Q
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and a linear map ϕα : Vt(α) → Vh(α) between the vector space at the tail of α to the vector space

at the head of α, for every arrow α.

Example 3.3. Here are two representations

M : C2 C3, N : C4 C
ϕα

ϕβ

φα

φβ

(6)

where

ϕα =

 4 2

3 3

0 9

 , ϕβ =

 −4 34

0 0

12 π

 , φα =
(

1 2 3 4
)
, φβ =

(
4 1 −101 19

)
.

We can associate to a representation M = {(Vi, ϕα)} a dimension vector dim M ∈ Z|Q0| by

setting

(dim M)i = dimVi.

Unlike a vector space, the representation M is not uniquely defined by its dimension vector.

However, as we shall see, dim M is a very useful invariant of M .

Example 3.4. If we consider the two representations M and N in (6), then

dim M = (2, 3), dim N = (4, 1).

3.3 Subrepresentations, simple representations etc.

Given a representation M = {(Vi, ϕα) | i ∈ Q0, α ∈ Q1} of Q, a subrepresentation N of M is the

representation {(Ui, ϕα|Ut(α)) | i ∈ Q0, α ∈ Q1}, where each Ui is a subspace of Vi, chosen so that

ϕα(Ut(α)) ⊂ Uh(α) for all α ∈ Q1.

Example 3.5. Here is an example of a subrepresentation. LetM be the representation of e1 e2

α

β

given in (6). Let U1 = C be the subspace of C2 spanned by v1 =

(
1

−1

)
and U2 = C2 the sub-

space of C3 spanned by

u1 =

 1

0

0

 , u2 =

 0

0

1

 .
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Then, M restricts to the subrepresentation U1 U2

ϕ′
α

ϕ′
β

, where

ϕ′α =

(
2

−9

)
, ϕ′β =

(
−38

12− π

)
.

If on the other hand, we take the representation N in (6) and U1 the subspace of C4 spanned by

the vectors

u1 =


1

0

0

0

 , u2 =


0

1

0

0

 ,

and U2 = {0} ⊂ C, then this does not produce a subrepresentation of N since

φα(U1) 6⊂ U2, φβ(U1) 6⊂ U2,

i.e. one cannot just choose arbitrary subspaces to get subrepresentations.

Example 3.6. If we consider the example of Q being e1
α

then a representation of Q is

simply a vector space V1 together with a linear map ϕα : V1 → V1. Then a subspace W1 ⊂ V1 is a

subrepresentation precisely if ϕα(W1) ⊆ W1.

We say that the representation M is simple if the only subrepresentations of M are M itself

and 0. Here is a construction of some simple representations. For each i ∈ Q0, we let E(i) =

{(E(i)j, ϕα)} denote the representation where E(i)i = C and E(i)j = 0 for j 6= i. Moreover,

ϕα = 0 for all α. We leave it to the reader to check that E(i) is simple.

Given two representations M = {(Vi, ϕα)} and N = {(Ui, ψα)} we can construct a new repre-

sentation M ⊕ N , the direct sum of M and N , as follows. At each vertex i, we simply take the

direct sum of vector spaces Vi ⊕ Ui. Then, we define the new map ηα = (ϕα, ψα) for each α ∈ Q1

i.e.

ηα =

(
ϕα 0

0 ψα

)
: Vt(α) ⊕ Ut(α) −→ Vh(α) ⊕ Uh(α).
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Notice that M and N are naturally subrepresentions of the direct sum M ⊕N .

Of course, to better understand representations of a given quiver, we want to be able to compare

them. The standard way of doing this is to consider homomorphisms between representations.

This basic notion is very important in the theory. See the exercises for more details.

3.4 The path algebra

There is a natural algebra we can associate to each quiver Q. Recall that an algebra A is a C-

vector space together with a bilinear multiplication map A×A→ A that makes it into a ring with

identity. First we define a path in Q to be a tuple of arrows αkαk−1 · · ·α1 such that h(αi) = t(αi+1)

for i = 1, . . . , k − 1. The length of the path is k. We think of each vertex ei as being a path of

length zero i.e. the path that does nothing. Let CQ be the complex vector space with basis given

by all paths in Q. To define a multiplication on CQ, it suffices to do so for paths. Then,

(βl · · · β1) ◦ (αk · · ·α1) =

{
βl · · · β1αk · · ·α1 if h(αk) = t(β1)

0 otherwise.

That is, multiplication is simply the concatenation of paths where-ever that makes sense. For the

paths ei of length zero, we have

(αk · · ·α1) ◦ ei =

{
αk · · ·α1 if t(α1) = i

0 otherwise.

Example 3.7. The path algebra CQ of

Q : e1 e2

α

β

has basis {e1, e2, α, β} and multiplication is given by

e2 · α = α · e1 = α, e2 · β = β · e1 = β, α · β = β · α = 0, . . .

But notice that the path algebra CQ′, where Q′ : e1
α

has basis {e1, α, α
2, α3, . . . } and
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multiplication

e1 · αn = αn · e1 = αn, αn · αm = αn+m.

In particular, CQ′ is infinite dimensional and commutative.

In group theory, it is often very advantageous to study the way that groups can act on other

objects such as sets, vector spaces, manifolds... Similarly, to better understand an algebra, it is very

advantageous to study actions of the algebra on vector spaces. This is the field of representation

theory. At its heart is the notion of a module over the algebra A.

Definition 3.8. An A-module M is a vector space equipped with a bilinear map A ×M → M ,

(a,m) 7→ a ·m such that

• 1 ·m = m for all m ∈M .

• a · (b ·m) = (a · b) ·m for all a, b ∈ A and m ∈M .

We will be interested, in particular, in the category of modules for the path algebra CQ.

Exercise 3.9. Notice that the definition of a module uses explicitly the identity element 1 of the

algebra A. However, we’ve made no mention of an identity for the path algebra. Check that

1 :=
∑
i∈Q0

ei

is the identity in CQ.

Example 3.10. IfQ is the quiver e1 e2

α

β

then we could takeM = Cf1⊕Cf2 with ei·fj = δi,jfj

and

α · f1 = 4f2, α · f2 = 0, β · f1 = 12f2, , β · f2 = 0,

or N = C7, where e1 · v = v and e2 · v = α · v = β · v = 0 for all v ∈ C7.

3.5 Representations vs. CQ-modules

We have seen that we can associated to a quiver its category of representations and also the

category of modules over the path algebra. It turns out that these are equivalent notions (formally,

one says that the categories are equivalent). To show that they are equivalent, we explain how to

go from a representation to a module for the path algebra and back.
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Let M = {(Vi, ϕα) | ei ∈ Q0, α ∈ Q1} be a representation of Q. We construct out of M a

module F (M) for the path algebra CQ. As a vector space,

F (M) :=
⊕
ei∈Q0

Vi,

is just the direct sum of the spaces Vi. Since every path in CQ is the composition of a series of

arrows, we just have to say how a) the trivial paths ei act on F (M) b) how each of the arrows

α ∈ Q1 acts on F (M). Firstly, for each i we have a projection map pi : F (M) → Vi and an

inclusion map qi : Vi ↪→ F (M). We define

ei = qi ◦ pi i.e. ei · v = qi ◦ pi(v).

Next, associated to α ∈ Q1 is the linear map ϕα : Vt(α) → Vh(α). We use a similar trick to extend

this to a map F (M)→ F (M) by setting

α = qh(α) ◦ ϕα ◦ pt(α) : F (M)
qh(α)−→ Vt(α)

ϕα−→ Vh(α)

pt(α)−→ F (M),

i.e. α · v = qh(α) ◦ ϕα ◦ pt(α)(v).

Now we want to go in the opposite direction. Given a module N for the path algebra CQ,

we want to define a representation G(N) = {(Ui, ψα) | ei ∈ Q0, α ∈ Q1}. Notice first that the

identity element 1 in CQ is the sum
∑

i∈Q0
ei. Also, the rules for mutiplication in CQ show that

ei · ej = δi,jei (we say that {ei ∈ Q0} form a complete set of orthogonal idempotents in CQ). This

implies that

N =
⊕
i∈Q0

ei ·N.

We set Ui = ei · N . We just need to define a linear map ψα : et(α)N → eh(α)N for each α ∈ Q1.

For this, notice that

Theorem 3.11. The maps F and G define inverse equivalences between the category of all rep-

resentations of Q and the category of all CQ-modules.

Proof. We have done all the hard work already in defining the maps F and G. It is straight-

forward to check that G ◦ F (M) = M for any representation M and F ◦ G(N) = N for any

CQ-module N .

Example 3.12. Let’s take Q to be the quiver e1 e2 e3
α

β
and the representation N :

C C C3

6
. Then CQ has basis {e1, e2, e3, α, β} and F (N) is the three-dimensional
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module with basis f1, f2, f3 such that

ei · fj = δi,j, α · f1 = 3f2, β · f3 = 6f2,

and α · fi = β · fj = 0 otherwise. Similarly, if we take the CQ-module M in example 3.10 then

G(M) is the representation of Q given by

C C.
4

7

Remark 3.13. In modern terms, the above theorem should really be phrased in the language of

category theory. The problem with this technical language is that it hides completely the very

simple idea behind Theorem 3.11. None the less, I’ll give the extra details for those of you of a

more abstract nature. Firstly, we are really considering the categories Rep(Q) of representations

of Q and CQ-Mod of left CQ-modules. This is not only the data of the set (or rather class)

Ob(Rep(Q)) of all representations, but also for each pair of representations M,N ∈ Ob(Rep(Q)),

the vector space HomQ(M,N) of all morphisms M → N . Similarly, the objects Ob(CQ-Mod) of

CQ-Mod are the modules and HomCQ(M,N) is the vector space of morphisms of CQ-modules.

Then F and G are functors between these two categories i.e. they are defined not only on the

objects but also on the hom-spaces of these categories,

FM,N : HomQ(M,N)→ HomCQ(F (M), F (N)), f 7→ F (f),

in a way that is compatible with compositions of morphisms. Finally, Theorem 3.11 says that F

and G are quasi-inverse equivalences of categories.

3.6 Remarks

There is a huge body of literature on quiver representations, simply type “Quiver representations”

into google and see what you get. Here are some references [5], [15], [18], [8], [7], that I found

useful when learning about quivers.
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4 Gabriel’s Theorem

In the previous lecture we were introduced to quivers and their representations. In particular, we

saw that the “smallest” possible representations are the simple ones and, given any two represen-

tations, we can make a new representation by taking their direct sum. Flipping this on its head,

we can ask if a representation can be decomposed into a direct sum of two smaller representations.

We say that a representation is indecomposable if it cannot be written as the direct sum of two

subrepresentations. In this final lecture, we’ll consider the question

Q. Which quivers have only finitely many indecomposable representations?

The proof of Gabriel’s Theorem is long and difficult, so to properly understand it you’ll need

to read several different presentations. In the remarks at the end of the section I’ve listed some

sources that contain a complete proof of the theorem.

4.1 Indecomposable representations

In order to study the representations of a quiver, the first thing to do is try and break a repre-

sentation up into a direct sum of simpler representations - we say that M decomposes as a direct

sum M1 ⊕M2. We’ve already seen that many representations occur as the direct sum of smaller

representations. Repeating, we get smaller and smaller representations. Of course this process

must eventually stop. That is, eventually we get to a representation M that cannot be written as

the direct sum M1 ⊕M2 of two subrepresentations.

Definition 4.1. The representation M is said to be indecomposable if it cannot be decomposed

into a direct sum of two proper subrepresentations.

Notice that we can always decompose M = M ⊕ 0, but such a decomposition doesn’t help us

understand M better, so we ignore these trivial decompositions. Clearly, if we want to understand,

or classify all representations of Q, it suffices to classify the indecomposable representations. In

general this turns out to be a very difficult (in fact, impossible; see section 4.5) task. It is because

of this that it’s so important to know which quivers only have finitely many indecomposables.

4.2 Gabriel’s Theorem

Here is the statement of Gabriel’s Theorem. The proof is rather long, but it will bring together

ideas from representation theory, geometry, reflection groups and combinatorics in a very clever

way.
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Theorem 4.2 (Gabriel). 1. The quiver Q admits finitely many indecomposables (up to iso-

morphism) if and only if the underlying graph is of type A, D or E.

2. In the case where Q has underlying graph a positive definite Euler graph, M 7→ dim M

defines a bijection between the isomorphism classes of indecomposable representations and

the positive roots R+ of the corresponding root system.

Part (2) means that each indecomposable M of Q is uniquely defined, up to isomorphism, by

its dimension vector and given any v ∈ R+ one can construct an indecomposable representation

M of Q such that dim M = v. This latter statement is the really difficult part of Gabriel’s

theorem.

Remark 4.3. There is a much more general result, called Kac’s Theorem; see [13]. This theorem

gives a precise description of the set of dimension vectors of the indecomposable representations

for any quiver Q. Moreover, Kac defined “real” and “imaginary” dimension vectors, and showed

that there is only one indecomposable representation of Q with dimension vector v if v is a real

vector and infinitely many indecomposable representations of Q with dimension vector v if v is

an imaginary vector. In this more general setting, Gabriel’s Theorem is saying that every root is

real if the underlying graph of Q is positive definite.

4.3 The proof part I: orbits

In this section we prove the easier direction of Gabriel’s Theorem: if Q has only finitely many

indecomposable representations then the underlying graph must be of type A, D or E. Firstly, we

introduce the space Rep(Q,v) of all representations with dimension vector v. If we have vector

spaces of dimension m and n respectively, then the space Hom(Cm,Cn) of all linear maps from

Cm to Cn has dimension m × n. Now, to define a representation M of Q with dimension vector

v = (v1, . . . , vk) we choose, for each α ∈ Q1, an element ϕα ∈ Hom(Cvt(α) ,Cvh(α)). Thus, M is a

point in

Rep(Q,v) =
⊕
α∈Q1

Hom(Cvt(α) ,Cvh(α)).

The space Rep(Q,v) is a vector space of dimension∑
α∈Q1

vt(α)vh(α).

What does it mean for two representations M,N ∈ Rep(Q,v) to be isomorphic? Well, if M =

{(Cvi , ϕα)} and N = {(Cvi , ψα)} it means that there are invertible linear maps fi ∈ GL(Cvi) for
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each i ∈ Q0 such that the diagrams

Cvt(α) Cvh(α)

Cvt(α) Cvh(α)

ϕα

ft(α) fh(α)

ψα

commute for all α ∈ Q1. That is, ψα = fh(α) ◦ ϕα ◦ f−1
t(α). Define an action of the group G(v) :=∏

i∈Q0
GL(Cvi) on the vector space Rep(Q,v) by

f · (ϕα) = (fh(α) ◦ ϕα ◦ f−1
t(α)), ∀ f ∈ G(v).

Then we have shown that:

Lemma 4.4. The two representations M,N ∈ Rep(Q,v) are isomorphic if and only if N is in

the G(v)-orbit of M .

Now we’ll need some basic facts from algebraic geometry (this is the study of spaces defined

by systems of polynomial equations). These spaces are called algebraic varieties e.g. the elliptic

curve C = {(x, y) | y2 = x3 + x2} ⊂ C2 is an algebraic variety. Just as for a vector space, these

spaces also have “dimension”; the dimension of C is one, as you might expect. Now the key fact

we’ll use is that the G(v)-orbits in Rep(Q,v) are not just sets, they are also algebraic varieties!

Therefore, we can compute the dimension of an orbits G(v) ·M := {f ·(ϕα) | f ∈ G(v)}. Moreover,

there’s a geometric analogue of the classical orbit-stabilizer theorem; see [5, Proposition 2.1.6] for

a proof.

Proposition 4.5. Let M ∈ Rep(Q,v). Then,

dimG(v) ·M = dimG(v)− dim StabG(v)(M).

What is the dimension of G(v)? Well, the set (in fact, variety) of all invertible linear maps

GL(Cn) is an open subset of all linear maps Hom(Cn,Cn). This implies that dimGL(Cn) =

dim Hom(Cn,Cn) = n2. Therefore,

dimG(v) = dim
∏
i∈Q0

GL(Cvi) =
∑
i∈Q0

dimGL(Cvi) =
∑
i∈Q0

v2
i .
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Define the Ringel form 〈−,−〉 on ZQ0 by

〈v,w〉 =
∑
i∈Q0

viwi −
∑
α∈Q1

vt(α)wh(α). (7)

Eventually, we want to arrive at a positive definite symmetric form, just as in the classification of

finite reflection groups. However, the Ringel form 〈−,−〉 is not symmetric. Therefore, the Euler

form is defined to be the symmetrization of the Ringel form,

(v,w)E := 〈v,w〉+ 〈w,v〉

= 2
∑
i∈Q0

viwi −
∑
α∈Q1

vt(α)wh(α) + wt(α)vh(α).

It does not depend on the orientation of Q i.e. it only depends on the underlying graph. But it

is important to note that this form we have just associated to the underling graph of Q is not the

Coxeter form! To distinguish between the two different symmetric forms, we will refer to a graph

as an Euler graph when we mean that the associated form is the Euler form. Similarly, a graph Γ

will be said to be a positive (semi-)definite if the associated Euler form is positive (semi-)definite.

Why is the Euler form useful? Let’s compute:

1

2
(v,v)E =

∑
i∈Q0

v2
i −

∑
α∈Q1

vt(α)vh(α), (8)

= dimG(v)− dim Rep(Q,v) (9)

= dimG(v) ·M + dim StabG(v)(M)− dim Rep(Q,v), (10)

where we have used Proposition 4.5 in the last step.

Lemma 4.6. If Q has only finitely many indecomposable representations then (v,v)E ≥ 2 for all

v ∈ NQ0.

Proof. If there are only finitely many indecomposable representations of Q, then for a fixed di-

mension vector v ∈ NQ0 there are only finitely many representation of Q up to isomorphism with

dimension vector v. Geometrically, this means that there are only finitely many G(v)-orbits in

Rep(Q,v). Since the dimension of the union of finitely many algebraic varieties is the maxi-

mum of the dimension of the varieties, there must be an open orbit in Rep(Q,v) i.e. an orbit

G(v) ·M such that dimG(v) ·M = dim Rep(Q,v). For this orbit, equation (10) implies that
1
2
(v,v)E = dim StabG(v)(M). Thus, we just need to show that dim StabG(v)(M) ≥ 1. For λ ∈ C×,
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consider the element λ = (λ IdCvi ) ∈ G(v). Then

λ · (ϕα) = (λ−1ϕαλ
−1) = (ϕα)

i.e. there is a diagonal copy of C× in StabG(v)(M) for any representation M . Since dimC× = 1,

this implies that dim StabG(v)(M) ≥ 1, as required.

Just as in the classification of finite reflection groups, we are aiming to reduce the classification

problem of Gabriel’s Theorem to one of classifying symmetric bilinear forms constructed from

finite graphs.

Proposition 4.7. Let Q be a quiver with only finitely many indecomposable representations. Then

the Euler form (−,−)E is positive definite.

Proof. We need to show that (v,v)E > 0 for all non-zero w ∈ Rn. If there exists a non-zero

vector w ∈ Rn such that (v,v)E ≤ 0 then there exists w ∈ QQ0 such that (v,v)E ≤ 0. Rescaling,

we may assume that w ∈ ZQ0 . Finally, notice from the explicit formula (7) for (v,v)E that if

|w| := (|w1|, |w2|, . . . , ) ∈ NQ0 then

(|w|, |w|)E ≤ (v,v)E ≤ 0.

Thus, we have shown that if (−,−)E is not positive definite then there exists a non-zero vector

w ∈ NQ0 such that (v,v)E ≤ 0. We deduce from Lemma 4.6 that (−,−)E is positive definite.

The proof of the following proposition is a direct, inductive, calculation.

Proposition 4.8. The following Euler graphs are positive definite.

An Dn

E6 E7 E8

The following Euler graphs are positive semi-definite.

Ãn D̃n
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Ẽ6 Ẽ7 Ẽ8

Now we can state the classification theorem for Euler graphs that implies the easy direction

in Gabriel’s Theorem.

Theorem 4.9. If Γ is a finite connected graph whose Euler form is positive (semi-)definite, the

Γ appears on the list given in Proposition 4.8.

Proof. As you can see from exercise 4.11, it is possible to deduce the theorem from Theorem 2.21.

Here we will give a direct proof.

Just as in the proof of Theorem 2.21, the key result is Corollary 2.20, though the analysis

is much simpler in this case. We will concentrate on classifying the positive definite graphs (we

do not actually need Corollary 2.20 for this), the argument for positive semi-definite graphs is

similar. So we assume that Γ is positive definite. This means that no subgraph of Γ can be

positive semi-definite. Recall that the valence of a vertex is the number of edges leaving the

vertex. Hence,

(a) Γ contains no cycles (Ãn),

(b) Each vertex of Γ has valence at most 3 (D̃4),

(c) There is at most one vertex with valence 3 (D̃n),

(d) If every vertex has valence at most 2 then Γ is type A,

(e) We assume that there is one vertex of valence 3. Then Γ = T (p, q, r) is a spoke with arms

of length p, q, r (so that Γ has p+ q + r edges in total).

(f) At least one of p, q, r is equal to 1 (Ẽ6). So without loss of generality, p = 1.

(g) q ≤ 2 (Ẽ7). If q = 1 then Γ is of type D. Thus, we assume q = 2.

(h) r ≤ 4 (Ẽ8) and hence Γ is of type E.
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Exercise 4.10. Using Corollary 2.20 and the arguments of the proof of Theorem 4.9, show that

the positive semi-definite Euler forms listed in Proposition 4.8 constitute all such forms.

Exercise 4.11. You’ll notice that the positive definite Euler graphs are precisely the positive definite

Coxeter graphs that are simply laced i.e. have at most one edge between any two vertices. Let

(−,−)C , resp. (−,−)E, be the Coxeter form, resp. the Euler form, associated to a graph Γ.

1. Show that if Γ is simply laced then (−,−)E = 2(−,−)C .

2. If Γ is not simply laced, show that there is no λ ∈ R such that (−,−)E = λ(−,−)C .

3. Show that the symmetric matrix (
2 −m
−m 2

)

corresponding to the Euler graph
m

is positive definite if and only if m = 1. When

is it positive semi-definite?

4. By considering the subgraphs
m

with m > 1 of Γ, show that a non-simply laced

Euler graph is not positive definite.

5. Deduce Theorem 4.9 from Theorem 2.21.

4.4 The proof part II: reflection functors

In order to relate the representation theory of Q to the corresponding root system, we will recall

the proof, in terms of reflection functors, given by Bernstein, Gelfand and Ponemarev. The

presentation we give here is based on unpublished lecture notes by H. Derksen.

Since we have defined the Euler form (−,−)E on ZQ0 , we can define, for each loop free vertex

i ∈ Q0, a reflection si by

si(v) = v − (v, ei)ei.

Then, if w = si(v), we have wj = vj for j 6= i and

wi = −vi +
∑
h(α)=i

vt(α) +
∑
t(α)=i

vh(α).

In this way we get a reflection group W (Q) acting on ZQ0 .
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Remark 4.12. In general, W (Q) will be an infinite group. It will be the same as the Coxeter group

associated to the underlying graph of Q, as defined in Theorem 2.8, if and only if Q is simply

laced. One can prove this using the results of exercise 4.11.

We call a vertex i ∈ Q0 a sink if there are no arrows emanating from i i.e. there is no α ∈ Q1

such that t(α) = i. Similarly, i is said to be a source if there are no arrows ending in i i.e. there is

no α ∈ Q1 such that h(α) = i. For each sink or source i of Q, we will define a reflection functor at

i that, given a representation M of Q, will produce a new representation whose dimension vector

is si(dim M). This will allow us to construct all indecomposable representations of Q starting

from the simple representations E(i).

First, we assume that i is a sink. We define a functor S+
i : Rep(Q)→ Rep(siQ), where siQ is

the quiver obtained by reversing all the arrows heading into i (so that i becomes a source in siQ).

Let M = {(Vj, ϕα)} be a representation of Q. Then S+
i (M) = {(Uj, ψα)}, where Uj = Vj for all

j 6= i, and if α ∈ Q1 with h(α), t(α) 6= i, then ψsi(α) = ϕα. At i, we define Ui to be the kernel of

the map ⊕
h(α)=i

Vt(α) → Vi, (vt(α)) 7→
∑
h(α)=i

ϕα(vt(α)).

If h(α) = i then t(si(α)) = i in siQ and we define

ψsi(α) : Ui → Uh(si(α)) = Vt(α)

to be the restriction to Ui of the projection map
⊕

h(α)=i Vt(α). The functor S+
i acts on morphisms

between representations in the obvious way.

Next we consider the case where i is a source. We define a functor S−i : Rep(Q)→ Rep(siQ).

Again, let M = {(Vj, ϕα)} be a representation of Q. Then S−i (M) = {(Uj, ψα)}, where Uj = Vj

for all j 6= i, and if α ∈ Q1 with h(α), t(α) 6= i, then ψsi(α) = ϕα. At i, we define Ui to be the

cokernel of the map

Vi →
⊕
t(α)=i

Vh(α), vi 7→ (ϕα(vi)).

If t(α) = i then h(si(α)) = i in siQ and we define

ψsi(α) : Ut(si(α)) = Vh(α) → Ui

to be the composition of the embedding Vh(α) ↪→
⊕

t(β)=i Vh(β) followed by the quotient map⊕
t(β)=i Vh(β) → Ui. Just as for sinks, it is straight-forward to define the functor S−i on morphisms

between representations.
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Remark 4.13. What we have done is take an algebraic structure, in this case a reflection si, and

“lift” it to a functor S+
i between categories. Thus, the categories Rep(Q) and Rep(siQ) are

playing the role of ZQ0 . This notion of lifting algebraic structures, in particular representations,

to categories and functors between them is called categorification. It is a relative new concept, but

one that has turned out to be incredibly powerful. As such, a great deal of research is currently

devoted to “categorifying” representations. For more on this fascinating subject, see [14] and [16].

The following theorem is the key result needed to complete the proof of Gabriel’s Theorem.

The proof is long and involved, so it won’t be given here. For the details see the references given

at the end of the section.

Theorem 4.14 (Bernstien-Gelfand-Ponomarev). Let i ∈ Q0 be a sink and M an indecomposable

representation of Q. Either,

1. M = E(i) and S+
i (E(i)) = 0; or

2. S+
i (M) 6= 0 is indecomposable S−i S

+
i (M) 'M and dim S+

i (M) = si(dim M).

Let i ∈ Q0 be a source and M an indecomposable representation of Q. Either,

1. M = E(i) and S−i (E(i)) = 0; or

2. S−i (M) 6= 0 is indecomposable S+
i S
−
i (M) 'M and dim S−i (M) = si(dim M).

From now on, we assume that the underlying graph of Q contains no cycles (this is no big

restriction since we ultimately only want to consider the quivers of type A,D or E). Then we

can relabel the vertices Q0 = {1, . . . , n} of Q so that t(α) < h(α) for all α ∈ Q1. We define the

Coxeter element in W (Q) as

c = s1 · · · sk.

Its inverse is c−1 = sk · · · s1. A moment’s thought shows that cQ = Q since each arrow is reversed

exactly twice. This means that we can lift c and c−1 to functors

C+ := S+
k ◦ · · · ◦ S

+
1 : Rep(Q)→ Rep(Q)

and

C− := S−1 ◦ · · · ◦ S−k : Rep(Q)→ Rep(Q).

Theorem 4.14 now implies

Corollary 4.15. Let M be an indecomposable representation of Q.
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1. Either C+(M) = 0 or C+(M) is an indecomposable representation such that dim C+(M) =

c(dim M).

2. Either C−(M) = 0 or C−(M) is an indecomposable representation such that dim C−(M) =

c−1(dim M).

From now until the end of the proof of Gabriel’s Theorem, we assume that Q is of type A,D

or E. Then, as noted in exercise 4.11, the two symmetric forms (−,−)E and (−, )C agree and we

can think of ZQ0 as a subset of Rn by sending the dimension vectors ei to the basis of Rn given

by the simple roots ∆ = {e1, . . . , en}. Since the underlying graph of Q is of crystallographic type

(see section 2.4), we may assume that the root system ∆ ⊂ R is of crystallographic type. Notice

that we have a preferred set of positive roots R+ ⊂ NQ0 since we have specified ∆. The reflection

group W (Q) acts on R and Theorem 2.7 implies that W (Q) ·∆ = R i.e each α in R can be written

(non-uniquely) as w(ei) for some w ∈ W (Q) and ei ∈ ∆.

Lemma 4.16. Let W be a reflection group of type A,D or E and α ∈ NQ0 a non-zero dimension

vector. Then c(α) 6= α and there exists some k � 0 such that ck(α) /∈ NQ0.

Proof. For the first part of the statement, we require the following identity

〈α, c(β)〉 = −〈β, α〉, ∀ α, β ∈ ZQ0 . (11)

Unfortunately, the proof of this equation uses the notion of projective and injective representations,

but if you’d like to see the proof see Lemma 4.4.1 and Lemma 4.4.2 of [15]. Assume that there

exists some α 6= 0 such that c(α) = α. Then equation (11) implies that

(α, α) = 〈α, c(α)〉+ 〈α, α〉 = −〈α, α〉+ 〈α, α〉 = 0.

But we have shown that the Euler form is positive definite for Q. Therefore this implies that

α = 0; a contradiction.

For the second part, notice that c has finite order since W is finite. Therefore, if the order of c

is n say, the root α+ c(α) + · · ·+ cn−1(α) is invariant under c, hence it is zero. This implies that

some ck(α) does not belong to NQ0 .

Finally we can proof the hard part of Gabriel’s Theorem.

Theorem 4.17. Let Q be a quiver, whose underlying graph is of type A,D or E. Then there is

an indecomposable of dimension α if and only if α ∈ R+. Moreover, any such indecomposable is

unique, up to isomorphism.
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Proof. Let M be an indecomposable representation of Q with dimension vector α. By Lemma

4.16, there exists some k > 0 such that ck(α) /∈ NQ0 . This means that (C+)k(M) = 0. Choose k

minimal such that (C+)k(M) = 0. Then, if N = (C+)k−1(M), we have N 6= 0 and C+(N) = 0.

Then Corollary 4.15 implies that there is some i such that S+
i ◦ · · · ◦ S+

1 (N) = E(i+ 1) is simple

with dimension vector ei+1. It also implies that

M = (C−)k−1(N) = (C−)k−1 ◦ S−1 ◦ · · · ◦ S−i (E(i+ 1)).

This shows that α = ck−1s1 · · · si(ei+1) is a positive root and M is uniquely defined by its dimension

vector.

Finally, we just need to show that if β is an arbitrary positive root, then there exists an

indecomposable M with dimension vector β. Again, by Lemma 4.16, we can choose k > 0 such

that ck(β) /∈ NQ0 but ck−1(β) ∈ NQ0 . Corollary 4.15 implies that sisi−1 · · · s1(β) = ei+1 for some

i. In this case, we can take M = (C−)k−1 ◦ S−1 ◦ · · · ◦ S−i (E(i + 1)). Corollary 4.15 ensures that

M is an indecomposable with dimension vector β.

Remark 4.18. For an alternative proof using the geometry of orbit closures, see [7] or [5].

4.5 Finite, tame and wild

What about the positive semi-definite Euler graphs? Do their quiver representations have some

particularly interesting properties? The answer is yes, but it order to give you the correct state-

ment, I need to tell you something about tame and wild quivers. We know already that if Q is

not of positive definite type then there will be infinitely many indecomposable representations

up to isomorphism. Even if we fix a dimension vector v, this will still be the case. However, in

many examples one sees that we can still parameterize the indecomposables as an infinite family

of modules. For instance, if we consider the quiver 1 2
α

β

with dimension vector (1, 1) then

the indecomposables are in bijection with points on the projective line P1. We say that Q is

tame if, for any fixed dimension vector, there are at most finitely many one-parameter families of

indecomposable representations of Q. Otherwise Q is said to be wild. Kac’s Theorem says that Q

is tame if and only if the underlying graph is a positive semi-definite Euler graph. In the above

example, the underlying graph is of type Ã2. For details on this, see [1, Section 4.4].

Example 4.19. The following example is very classical and can be viewed as one of the motivating

example behind the definition of a quiver. Fix a vector space Cn and consider the problem of

classifying k-tuples of subspaces (V1, . . . , Vk) with dimVi = ni ≤ n. We don’t care about change of
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basis in Cn, so we think of (V1, . . . , Vk) as equivalent to (U1, . . . , Uk) if there is some g ∈ GL(Cn)

such that

(U1, . . . , Uk) = (gV1g
−1, . . . , gVkg

−1).

We can encode this problem as a problem about quiver representations. Let Q be the spoke quiver

with one central vertex 0 and k surrounding vertices 1, . . . , k with an arrow αi from each outer

vertex i to 0. When k = 4, we have

1

2 0 4

3

α1

α2

α4

α3

If we take the dimension vector v = (n, n1, . . . , nk), then classifying the subspaces is the same as

classifying representations of Q with dimension vector v such that each ϕαi is injective - a subset

of all representations. Then Gabriel’s Theorem says that there are only finitely many collections of

subspaces when k ≤ 3. When k = 4, we get the Euler graph D̃4, which is positive semi-definite by

Proposition 4.8. Therefore, for each v there are finitely many 1-dimensional families of collections

of subspaces. When k > 4, the classification problem is wild.

4.6 The universality of Coxeter/Euler graphs

Behind much of what we have seen already is a Coxeter/Euler graph of some type or other. Recall

that the set of positive definite Coxeter graphs are the ones of type A,B,D,E,F,G,H and I. The

graphs of type A,B,D,E,F and G are the crystallographic Coxeter graphs and the simply laced

ones (those of type A,D and E) are precisely the positive definite Euler graphs.

Each of the following classes of objects are classified by Coxeter, or Euler, graphs of some

sort. In each case, this is because the classification problem is shown to be equivalent to the

classification of Coxeter/Euler graphs of various types.

• The classification of finite reflection groups. We’ve seen that these are classified by positive

definite Coxeter graphs.

• The classification of quivers of finite type. Gabriel’s Theorem shows that these are classified

by positive definite Euler graphs.
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• The classification of simple Lie algebras. This (essentially2) reduces to the problem of

classifying crystallographic Coxeter graphs; see [11, Chapter 11].

• The classification of rational surface singularities. These are classified by positive definite

Euler graphs; see [17].

• The classification, up to conjugation, of finite subgroups of SU(2). As explained in [20], the

McKay correspondence shows that these groups are also classified by positive definite Euler

graphs.

• The positive definite Euler graphs also classify the “elementary catastrophes” appearing in

Thom’s Catastrophe theory. See section 9 of [19] for details.

In this list there is no mention of the original objects we started with, the Platonic solids. If

you are willing to be a bit flexible with your definitions then they also fit into this classification.

The “dihedron” is defined to be the regular p-gon but with an infinitesimal thickening to make

it a 3-dimensional solid. It has Schläfli symbol {p, 2} for p ≥ 2. Similarly, the “orange” is the

regular solid where each face only has two edge (think of Terry’s chocolate orange). It has Schläfli

symbol {2, q} for q ≥ 3. In this way we get

• The classification of Platonic solids is given by positive definite Euler graphs.

• There is a bijection between the Platonic solids and the finite subgroups of SO(3,R) (i.e.

the finite rotationl groups), up to isomorphism. This is given by sending a solid P to its

group W0(P ) of rotational symmetries. Thus, the finite rotation groups are classified by

positive definite Euler graphs.

4.7 Where to next?

What we’ve covered so far is just the tip of a huge, wonderfully complex, iceberg. We’ve seen

how finite reflection groups, root systems, Lie algebras and quiver representations are all related

by Coxeter and Euler graphs. These are just some of the many mathematical objects that have

these graphs underlying them. Some others are listed in section 4.6 above. Each of these objects

is a particular example of a rich story of it’s own. For instance rational surface singularities are

the some of the most basic examples of singular algebraic varieties in algebraic geometry. This

2Strictly speaking they are classified by the corresponding Dynkin diagram, which also encodes the relative
length of the roots of the crystallographic root system.
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is a vast subject, with a long history, but still the focus of attention for many mathematicians

worldwide. A similar statement can be made about Lie theory.

I would just like to mention two key areas that today play a role on the interface between

representation theory and geometry and that I think are particularly beautiful generalizations of

the above theory. The first of these is the generalized McKay correspondence - the original McKay

correspondence relates the representation theory of finite subgroups G of SU(2) with the geometry

of the resolution of the corresponding quotient singularity C2/G. Generalizations of this aim to

relate resolutions of the singularities Cn/G, for G ⊂ SU(n), with the representation theory of G.

The most general result in this direction is the generalized McKay correspondence of Bridgeland,

King and Reid [4]. A closely related result was shown by Bezrukavnikov and Kaledin [3].

The second is the theory of Nakajima’s quiver varieties. These are moduli spaces of represen-

tations of quivers, satisfying some additional relations. They can be used for instance to construct

resolutions of the quotient singularities C2/G. But they also appear in the representation theory

of certain infinite dimensional Lie algebras called Kac-Moody Lie algebras, are ubiquitous in the

construction of categorifications, and have applications in geometry and theoretical physics. For

an introduction to quiver varieties, have a look at the lecture notes [9] by Ginzburg.

4.8 Remarks

For a crash course on Gabriel’s Theorem and Kac’s Theorem, try the very well written article

[8]. The extensive notes [15] also contain a detailed proof of Gabriel’s Theorem via reflection

functors (as well as many other interesting applications of these functors). The original paper [2]

by Bernstein-Gelfand-Ponomarev, where they prove Gabriel’s Theorem using reflection functors

is also very readable - a copy is available at

http://www.math.tau.ac.il/~bernstei/Publication_list/

publication_texts/BGG-CoxeterF-Usp.pdf

Other notes that contain a proof of Gabriel’s Theorem include [5], [18], and [7].
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5 Appendix

5.1 The Spectral Theorem for symmetric matrices

The Spectral Theorem for real valued symmetric matrices is a very useful result. We include a

proof here.

Theorem 5.1. Let A be a real valued symmetric matrix.

1. The eigenvalues of A are real.

2. There exists an orthogonal matrix g ∈ O(n,R) such that gAgT is diagonal.

Here O(n,R) = {g ∈ GL(n,R) | g−1 = gT} is the real orthogonal Lie group. You might think

that it’s not so surprising that a matrix with real coefficients has real eigenvalues. However, most

matrices with real coefficients actually have complex eigenvalues. As a simple examples, consider(
0 1

−1 0

)
,

(
2 5

−3 6

)
,

(
0 −7

1 12

)
.

The second part of the the spectral theorem is saying that one can always find an orthonormal

basis {u1, . . . , un} of Rn i.e. a basis such that (ui, uj) = δi,j, such that each ui is an eigenvector

for A.

Proof of Theorem 5.1. First we note that A is symmetric if and only if (Au, v) = (u,Av) for all

u, v ∈ Rn; it is enough to check this when u = ei and v = ej are standard basis elements, then

(Au, v) = aj,i and (u,Av) = ai,j.

As noted above, (2) is equivalent to showing that there is an orthonormal basis {u1, . . . , un}
such that each ui is an eigenvector of A (with eigenvector αi say). Therefore, we will construct the

basis {u1, . . . , un} by induction on n and show that each αi is real. The case n = 1 is vacuous since

A is real valued. Thus, we may assume by induction that the theorem holds for all symmetric

(n− 1)× (n− 1) matrices.

In general, a real valued matrix need not have any real eigenvectors. So the first (and in

fact hardest) step is to show that A has a real eigenvector with real eigenvalue. To do this, we

briefly need to step into the complex world where we are guaranteed the existence of at least one

eigenvector. A complex valued matrix B is called unitary if B† = B, where B† :=
(
B
)T

= (BT )

and B means take the complex conjugate of every entry of B. Clearly every real symmetric matrix
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is unitary when considered as a complex matrix. Let u be an eigenvector for A (over C) with

eigenvalue λ. We wish to show that λ is real. If u† := uT then u† · u =
∑n

i=1 |ui|2 ∈ R>0. Then

(u†Au) = λ(u† · u) = λ(u†u).

On the other hand,

(u†Au) = u†A†u

= u†Au = λ(u† · u),

where the first equality is true for any matrix and the second is because A is unitary. Hence we

deduce that (λ− λ)(u† · u) = 0. This means that λ = λ is real. If we write u = v +
√
−1w, where

v, w ∈ Rn, then

Au = (Av) +
√
−1(Aw) = (λv) +

√
−1(λw).

Therefore, both v and w are real eigenvectors for A with eigenvalue λ. Since u 6= 0, at least one

of them is non-zero. Let un be this real eigenvector. Rescaling if necessary, we may assume that

(un, un) = 1. Set αn := λ.

Now, we’ll use the induction hypothesis to find the vectors u1, . . . , un−1. Let

V = u⊥n := {v ∈ Rn | (un, v) = 0},

an (n−1)-dimensional subspace of Rn. Since A is symmetric and Aun = αnun, we have (Av, un) =

αn(v, un) = 0 for all v ∈ V , which means that A(V ) ⊂ V . Chose an arbitrary basis for V and

write A′ for the (n− 1)× (n− 1) matrix of A restricted to V . Then

A =

(
A′ 0

0 αn

)
.

Moreover, (A′u, v) = (Au, v) = (u,Av) = (u,A′v) for all u, v ∈ V which means that A′ is also

a symmetric real matrix. By induction there exists an orthonormal basis {u1, . . . , un−1} of V

such that A′ui = αiui. Then {u1, . . . , un−1, un} is the basis of Rn that we have been looking for

(check!).
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5.2 Rotations in R3

In this section we will prove that

The transformation g ∈ GL(R3) is a rotation if and only if g ∈ SO(3,R). (12)

Here SO(3,R) is the group of all matrices g ∈ GL(R3) such that det(g) = 1 and ggT = 1. A

rotation of R3 is a transformation that fixes pointwise a line and acts as a rotation in the plane

perpendicular to that line.

We will prove the above in a series of easy claims. We begin with something more general.

A complex valued matrix B ∈ GL(Cn) belongs to the unitary group U(n) if B−1 = B†, where

B† :=
(
B
)T

= (BT ) and B means take the complex conjugate of every entry of B. Clearly

O(n,R) ⊂ U(n).

Lemma 5.2. Let A ∈ U(n).

1. There exists g ∈ U(n) such that gAg† is diagonal.

2. The eigenvalues λi of A have modulus |λi| equal to 1.

Proof. We prove both claims by induction on n, just as in the proof of Theorem 5.1. The case

n = 1 is vacuous.

We extend the usual inner product (−,−) on Rn to the Hermitian form 〈−,−〉 on Cn given

explicitly by

〈z, w〉 =
n∑
i=1

ziwi.

Then A ∈ U(n) if and only if 〈Az,Aw〉 = 〈z, w〉 for all z, w ∈ Cn.

Since we are working with complex matrices there is at least one eigenvector z ∈ Cn, with

eigenvalue λ say, for A i.e. Az = λz. Rescaling, we may assume that ||z||2 = 〈z, z〉 = 1. Let

V = z⊥ = {x ∈ Cn | 〈x, z〉 = 0}. Then the fact that A ∈ U(n) implies that A(V ) ⊂ V . Set un = z

and λn = λ. As in the proof of Theorem 5.1, if A′ is the restriction of A to V , then A′ ∈ U(n− 1)

and

A =

(
A′ 0

0 λn

)
.

By induction, A′ can be diagonalized and all eigenvalues of A′ have modulus 1. Moreover, the

corresponding eigenvectors u1, . . . , un−1 are orthonormal with respect to 〈−,−〉 Let us check that

|λn| = 1. We have

1 = 〈z, z〉 = 〈Az,Az〉 = 〈λz, λz〉 = λλ〈z, z〉 = |λ|2.
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Finally, we should check that there is some g ∈ U(n) such that gAg† is the diagonal matrix with

diagonal entries λ1, . . . , λn. We just take g to be the matrix with columns u1, . . . , un. If e1, . . . , en

is the standard orthonormal basis of Cn, then

〈gei, gej〉 = 〈ui, uj〉 = δi,j = 〈ei, ej〉

which implies that g ∈ U(n). By construction, gAg† is the required diagonal matrix.

In the case A ∈ O(n,R) ⊂ U(n), the fact that the coefficients of the characteristic equation

det(A− tId) are real implies that if λ is an eigenvalue for A, so too is its complex conjugate. Thus,

if A ∈ O(3,R), there exists g ∈ U(3) and θ ∈ R such that

gAg† =

 ±1 0 0

0 e
√
−1θ 0

0 0 e−
√
−1θ

 .

In particular, if A ∈ SO(3,R) then A has an eigenvalue equal to one. If it has more than one

eigenvalue equal to one, then A will be the identity matrix. Therefore, without loss of generality,

the real matrix Id − A has a one-dimensional kernel ` ⊂ R3. Let u1 ∈ R3 span the kernel.

Rescaling if necessary, we may assume that ||u1|| = 1. Since A is orthogonal, (Av,Aw) = (v, w)

for all v, w ∈ R3. In particular, this implies that A(`⊥) ⊂ `⊥, where `⊥ = {v ∈ R3 | (u1, v) = 0}.
Fix an orthonormal basis u2, u3 of `⊥. Then {u1, u2, u3} is an orthonormal basis of R3. With

respect to this basis,

A =

(
1 0

0 A′

)
,

where A′ ∈ SO(2,R). The only thing left to show is that A′ acts as a rotation of the plane R2

spanned by {u2, u3}. But it is an easy direct calculation to show that B ∈ GL(R2) is a rotation

if and only if B ∈ SO(2,R). This completes the proof of (12).

Finally, we note:

Proposition 5.3. Let P be a Platonic solid. Then W (P ) is a finite subgroup of O(3,R).

Proof. We have already seen that W (P ) is a finite group. Rescaling P if necessary, we may

assume that the vertices of P all lie in the 3-sphere S3 = {v ∈ R3 | ||v|| = 1}. Notice that every

transformation g ∈ W (P ) preserves S3. Therefore it suffices to show that the symmetry group

W (S3) of S3 equals O(3,R). It’s just as easy to consider W (Sn) ⊂ GL(Rn). Since O(n,R) can
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be defined as those g ∈ GL(Rn) such that (g · v, g · w) = (v, w) for all v, w ∈ Rn, we see that

||g ·v|| = ||v|| = 1 for all v ∈ S3. Thus, O(n,R) ⊂ W (Sn). To show the opposite inclusion, it suffices

to show that if u, v are a pair of orthonormal vectors in Rn i.e. (v, v) = (u, u) = 1, (u, v) = 0, then

(g · u, g · u) = (g · v, g · v) = 1 and (g · u, g · v) = 0 for all g ∈ W (Sn). The first two conditions are

automatic. To show that (g · u, g · v) = 0, we expand

2 = (u− v, u− v) = (g · (u− v), g · (u− v))

= (g · u, g · u) + (g · v, g · v)− 2(g · u, g · v)

= 2− 2(g · u, g · v)

Thus, (g · u, g · v) = 0 as required.
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